Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

DEPARTMENT OF COMMERCE
 U. S. COAST AND GEODETIC SURVEY
 E. LESTER JONES, Superintendent

GEODESY

INVESTIGATIONS OF GRAVITY AND ISOSTASY

BY

WIITIAM BOWIE

Chief of Division of Geodesy
U. S. Coast and Geodetio Survey

SPECIAL PUBLICATION No. 40

WASHINGTON

ADDITIONAL COPIES
of this publication may be procurkd from THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE

WASHINGTON, D. C.
60 CENTS PER COPY

CONTENTS.

Page. Introduction. 5
Part I.-Investigation of Gravity and Isostasy.
Chapter I.-Definition of terms and explanation of methods of computation. $7 \sim$
Isostasy defined 7
Assumptions made in regard to the topography and isostatic compensation 8
Change of sign due to distance. 8
Reduction tables for effect of topography and isostatic compensation. 9
Corrections and additions to tables. 9
Chapter II.-Corrections for topography and isostatic compensation and principal facts for gravity stations. 19
Mean elevations and corrections for topography and isostatic compensation for separate zones at stations in the United States. 19
Mean elevations and corrections for topography and isostatic compensation for separate zones at selected stations in Europe 45
Principal facts for 219 stations in the United States. 48 m
Principal facts for 42 stations in Canada 54
Principal facts for 73 stations in India. 55
Principal facts for 40 stations not in the United States proper, Canada, or India. 57
Chapter III. - Comparison of apparent anomalies at stations in the United States by the Hayford and old methods of reduction. 58
Gravity anomaly maps. 61
Agreement as to positive and negative areas deduced from gravity and from deflection data. 62
Chapter IV.-Relation between the gravity anomalies and the topography. 63
Chapter V.-Relation between the gravity anomalies and the geologic formation. 70
Relation between the gravity anomalies and the geologic formation for stations in the United States. 71
Relation between the gravity anomalies and the geologic formation at stations in the United States not within 20 miles of another formation 78
Relation between the gravity anomalies and the geologic formation for stations in Canada 80
Relation between the gravity anomalies and the geologic formation for stations in India. 81
Relation between the gravity anomalies and the geologic formation shown graphically 82
Relation between the gravity anomalies and areas of erosion and deposition. 84
Chapter VI.-Regional versus local distribution of compensation. 85
Relation of local compensation anomalies and regional compensation anomalies to the topography 88
Chapter VII.-Effect of the elevation of the station upon the intensity of gravity 93
Chapter VIII.-Effect on the intensity of gravity of changes in the depth of compensation. 97
Gravity anomalies for various depths of compensation for stations in the United States 103
Relation between the depth of compensation and the topography 107
Graphic determination of the most probable depth of compensation. 111
Constants for the gravity formulas and the most probable depths of compensation derived by analytical methods from gravity data. 113
Helmert's depth of compensation from gravity observations. 131
Chapter IX.-Summary 133
Bibliography 135
Part II.-Summaries of Gravity Observations and Descriptions of Stations.
Chapter I.-Abstracts of results 139
Chapter II.-Descriptions of stations. 177
Index to publications containing abstracts of results and descriptions of stations. 187
Alphabetical index 193

ILLUSTRATIONS.

Fig. Page.

1. Original form of the Mendenhall half-second pendulum apparatus 48
2. Mendenhall halfsecond pendulums as originally constructed with knife edge attached to head of pendulum and divided into two parts. 48
3. Present pendulum apparatus showing vertical form of telescope, electric illumination for observing slit and the felt-and-leather case for controlling the temperature 48
4. Felt-and-leather case for temperature control partly removed from pendulum receiver 48
5. Graphic determination of the most probable depth of compensation from 216 stations in the United States. 110
6. Graphic determination of the most probable depth of compensation from United States stations east of the ninety-eighth meridian 110
7. Graphic determination of the most probable depth of compensation from United States stations west of the ninety-eighth meridian. 110
8. Graphic determination of the most probable depth of compensation from 56 United States stations in moun- tainous regions 112
9. Graphic determination of the most probable depth of compensation from 20 United States stations in moun- tainous regions and above the general level. 112
10. Map showing location of gravity stations in the United States and Canada used in this investigation.... In pocket
11. Lines of equal anomaly in the United States and southern Canada for the Hayford 1912 method of reduction(depth of compensation, 113.7 km .)In pocket
12. Lines of equal anomaly in the United States for the Hayford 1916 method of reduction (depth of compensa-tion, 60 km .)In pocket
13. Lines of equal anomaly in the United States for the Bouguer method of reduction In pocket
14. Lines of equal anomaly in the United States for the free air method of reduction. In pocket
15. Enlarged scale for the region surrounding Washington, D. C., showing lines of equal anomaly for the Hayford 1912 method of reduction (depth of compensation, 113.7 km .) In pocket
16. Enlarged scale for the region surrounding Washington, D. C., showing lines of equal anomaly for the Hayford1916 method of reduction (depth of compensation, 60 km .)In pocket
17. Geologic formations in the United States east of the Rocky Mountains. In pocket
18. Illustration from Supplementary Investigation in 1909 of the Figure of the Earth and Isostasy, showingresiduals of Solution H, all stations, with areas of excessive and defective density, and showing also allgravity stations and the Hayford 1912 anomaliesIn pocket

INVESTIGATIONS OF GRAVITY AND ISOSTASY.

By William Bowte, Ghief of the Division of Geodesy.

INTRODUCTION.

For a number of years the United States Coast and Geodetic Survey has been carrying on geodetic investigations of isostasy, with special reference to the effect of the isostatic compensation upon the deflection of the vertical and the intensity of gravity.

Four reports on these investigations have appeared, the first one in 1909 and the last in 1912. ${ }^{a}$
The first two dealt with the determination of the figure of the earth from deflections of the vertical in the United States, corrected for topography and isostatic compensation. In the last two there were given the results of the investigation of the effect of topography and isostatic compensation upon the intensity of gravity at stations mostly in the United States.

The present volume gives the results of further study of the relation between gravity and isostasy. In it are embodied the gravity data resulting from the previous work. In the second gravity report 124 stations in the United States were considered, while in the investigation of which this volume is a report there are listed 219 gravity stations in the United States, 42 stations in Canada, 73 stations in India, and 40 others, principally in Europe. The Canadian stations were established by F.A. McDiarmid, of the Geodetic Survey of Canada. He reduced those stations for topography and isostatic compensation after the method described in Special Publication No. 10. The late director of the Geodetic Survey of Canada, Dr. W. F. King, generously furnished to the United States Coast and Geodetic Survey the results of their work for incorporation with the United States stations in some phases of this investigation, previous to their publication in Canada.

This report has as its main features:

1. The observed value of the intensity of gravity at stations in the United States, Canada, India, and Europe and at a few scattering stations.
2. Discussions of the relations between the gravity anomalies and the topography, the large areas of erosion and deposition, the geological formation as indicated by the surface rock at the stations, and the elevation of the station.
3. The regional versus the local distribution of isostatic compensation.
4. The determination of a gravity equation, the earth's flattening, and the depth of compensation upon each of several assumptions.
5. Summaries of the results of the field observations with the pendulums. These furnish a basis upon which to judge the accuracy of the determination of the intensity of gravity at the various stations.
6. The illustrations in the pocket at the back of the volume, which give graphically much data resulting from this investigation.

There are other lines along which investigations might have been made. Some of these may be undertaken at a later date as more data become available. One of these is the detailed study of certain regions where there are gravity and deflection stations and where the evidence

[^0]points to strong local disturbances or causes which change the size and sign of the gravity anomalies at stations grouped comparatively close together. This phase of the subject is an important one and has been urged upon the Survey by several scientists of note.

It is hoped that many of those who are interested in the subject of isostasy will use the data contained in this and similar publications of the Survey for detailed study and investigation. It is only in this way that the data collected and published can be fully utilized. The time which can be placed on this work by members of the Survey is necessarily limited, because of many other lines of duty calling for prompt attention.

It is believed that it is desirable to publish promptly the observed values of the intensity of gravity and the reductions for topography and isostatic compensation rather than to delay for exhaustive detailed atudies.

The author desires to express his appreciation of the important part taken by a number of the members of the Survey in the investigations covered by this report and in the preparation of the report itself. Especial credit is due Computers W. D. Lambert, Sarah Beall, H. G. Avers, C. H. Swick, E. F. Church, and G. E. Selby.

Assistants C. L. Garner and J. D. Powell deserve much credit for the efficient way in which they carried on the field work while establishing the 94 new stations. They did this work with great accuracy and economy. They also assisted in the office reductions.

As far as possible this report follows the general plan of the two previous gravity reports of the Survey. As the writer is the author of the second of those reports and a joint author of the first, some of the statements and definitions contained in the text of this volume may be similar to those in the former reports. Under the circumstances it is not necessary to set them off from the other text.

In Part I of this volume are given the results of the investigations, and in Part II the abstracts or summaries of observations in the field and the descriptions of the stations.

Anyone wishing to make a detailed study of the subject covered by this report should consult the four reports whose titles are given in the footnote on page 5. They may be obtained through the Division of Publications of the Department of Commerce, Washington, D. C.

DLPAMMEIA IIF GLIHGGY LIBRARY

Part I.-INVESTIGATION OF GRAVITY AND ISOSTASY.

Chapter 1 .-DEFLNITION OF TERMS AND EXPLANATION OF METHODS OF COMPUTATION

ISOSTASY DEFINED.

If the earth were composed of homogeneous material, its figure of equilibrium, under the influence of gravitation ${ }^{a}$ and its own rotation, would be an ellipsoid of revolution.

The earth is composed of heterogeneous material which varies considerably in density. If this heterogeneous material were so arranged that its density at any point depended simply upon the depth of that point below the surface, or, more accurately, if all the material lying at each equipotential surface (rotation considered) were of one density, a state of equilibrium would exist, and there would be no tendency toward a rearrangement of masses. The figure of the earth in this case would be a very close approximation to an ellipsoid of revolution.

If the heterogeneous material composing the earth were not arranged in this manner at the outset, the stresses produced by gravity would tend to bring about such an arrangement; but as the material is not a perfect fluid, since it possesses considerable viscosity, at least near the surface, the rearrangement will be imperfect. In the partial rearrangement some stresses will still remain, different portions of the same horizontal stratum may have somewhat different densities, and the actual surface of the earth will be a slight departure from the ellipsoid of revolution in the sense that above each region of deficient density there will be a bulge or bump on the ellipsoid, and above each region of excessive density there will be a hollow, relatively speaking. The bumps on this supposed earth will be the mountains, the plateaus, the continents, and the hollows will be the oceans. The excess of material represented by that portion of the continent which is above sea level will be compensated for by a deficiency of density in the underlying material. The continents will be floated, so to speak, because they are composed of relatively light material; and, similarly, the floor of the ocean will, on this supposed earth, be depressed because it is composed of unusually dense material. This particular condition of approximate equilibrium has been given the name "isostasy."

The adjustment of the material toward this condition, which is produced in nature by the stresses due to gravity, may be called the "isostatic adjustment."

The compensation of the excess of matter at the surface (continents) by the deficiency of density below, and of surface deficiency of matter (oceans) by excess of density below, may be called the "isostatic compensation."

Let the depth below sea level within which the isostatic compensation is complete be called the "depth of compensation." At and below this depth the condition as to stress of any element of mass is isostatic; that is, any element of mass is subject to equal pressures from all directions as if it were a portion of a perfect fluid. Above this depth, on the other hand, each element of mass is subject in general to different pressures in different directionsto stresses which tend to distort it and to move it.

Consider the relations of the masses, densities, and volumes, above the depth of compensation, fixed by the preceding definition. The mass in any prismatic column which has for its base a unit area of the horizontal surface which lies at the depth of compensation, for

[^1]its edges vertical lines (lines of gravity) and for its upper limit the actual irregular surface of the earth (or the sea surface, if the area in question is beneath the ocean), is the same as the mass in any other similar prismatic column having any other unit area of the same surface for its base.

ASSUMPTIONS MADE IN REGARD TO THE TOPOGRAPHY AND ISOSTATIC COMPENSATION.

For the purpose of making the computations by the Hayford method the earth's crust is assumed to be in a state of perfect isostasy, with each topographic feature compensated for by a deficiency (or excess) of mass directly under it, and it is assumed that this compensating deficiency (or excess) of mass is uniformly distributed to a depth of 113.7 km . This depth is that resulting from the first investigation by Hayford given in the Figure of the Earth and Isostasy from Measurements in the United States.

The mean density of the solid portion of the earth's surface is assumed to be 2.67 and the density of the ocean water 1.027 . There is no assumption regarding the normal densities in the earth's crust below sea level. This fact should be clearly borne in mind, for a failure to realize this has been confusing to some who have considered the question of isostasy. It is simply assumed that the arrangement of the densities in the crust under a coastal plane at zero elevation is normal and that the densities under the continents, islands, and the oceans depart from the normal condition by the amount necessary to distribute the isostatic compensation uniformly with respect to depth of compeasation. For our purpose a knowledge of the actual density at any given depth is unnecessary.

The writer does not believe any one of the assumptions stated above is exactly true. The average density (from Harkness's The Solar Parallax and Its Related Constants, p. 92) is certainly in error for the surface materials at many stations. The depth of compensation has a large probable error and may be largely in error for any given place. As it is the average or mean depth it may be subject to an actual error of considerable size. It is probable that the compensation for a topographic feature is not always distributed with exact uniformity with respect to depth. And it is also probable that the compensation is not located directly under a topographic feature. It may have a greater horizontal extent than the feature. The anomalies or differences between the observed gravity and the computed gravity give an idea of the extent to which the assumptions are not true. These differences are due partly to errors in the observations and computations, but mostly to departures from the conditions postulated. But it may be stated that the results show that the continents as a whole are almost perfectly compensated and that this is the condition with respect to large portions of a continent. One of the important problems of the geodesist is to determine the limits of the areas which may not be at least partly compensated.

CHANGE OF SIGN DUE TO DISTANCE.

The reader should consult pages 65 to 70 of Special Publication No. 10, which deals with the change of sign of the effect of topography and compensation due to distance.

In nearly all cases the combined effect of the topography and compensation changes sign from plus to minus before zone L is reached. This zone has an inner limit which is only 19 km . from the station. This is an important matter which should be considered by anyone studying the question of isostasy and its effect upon the intensity of gravity. One might assume without due consideration that in a mountainous region a station should have large positive corrections for each of the near zones, say within zone \mathbf{N}, outer limit 99 km ., while they may have large negative values. Pikes Peak, for example, has corrections of -0.0290 and -0.0334 dynes, respectively, for zones M and N .

The explanation of the change in sign is given in detail in Special Publication No. 10. Briefly, it is that near the station the topography has the predominating effect, as it is much closer than the center of mass of the compensation. As the distance from the station increases the ratio between the sine of the depression angle to the center of the compensation and the sine of the angle of elevation or depression to the center of the topography becomes greater.

At the same time the ratio of the distances to the compensation and to the topography becomes less. Therefore at a certain distance the vertical component of the effect of the compensation becomes greater than that of the topography.

It is evident that at great distances from the station the effect of the compensation will be greater than the topography. It should be noted that the effect of topography in the oceans is negative and its compensation positive. This fact causes the combined effect for the more distant zones, which cover water areas mostly, to be positive. These facts may be observed by referring to the table given on pages $20-48$.

REDUCTION TABLES FOR EFFECT OF TOPOGRAPHY AND ISOSTATIC COMPENSATION.

The tables for making the reduction for topography and compensation were computed upon the theory that the earth's crust is in a state of perfect isostasy with a surface density of 2.67 and a density of water in the oceans of 1.027 , that the compensation is complete directly under the topography, and that the depth of compensation is 113.7 km . These tables with detailed statements as to the methods employed in computing them, and directions for using them are printed in Special Publication No. 10, entitled, "The effect of topography and isostatic compensation upon the intensity of gravity," United States Coast and Geodetic Survey, 1912. It is not desirable to repeat the tables with descriptions showing how to use them. The tables are made for 33 zones, which cover the entire surface of the earth, it having been found that the resultant attraction of the topography and compensation even at the antipodes must be taken into account.

It has been found possible to save much effort in making the computations by interpolating the values for the effect of the topography and compensation for the outer zones for a station from the values for those zones computed for surrounding stations. The saving will be greater when the new station is very close to the stations used for the interpolation. The subject of interpolation is discussed fully on pages 58 to 65 of Special Publication No. 10.

CORRECTIONS AND ADDITIONS TO TABLES.

Since its publication some errors were discovered in the reduction table for zone C. This table is repeated below with the corrected numbers in boldface type. These errors had no appreciable effect on the results of the investigations reported in Special Publications Nos. 10 and 12.

On pages 11 to 18 there are given additional tables which should be used when computing the effect of topography and compensation for the close topography at mountain stations. (See p. 94.)

For computing the effect of using the tables for a subdivided zone instead of the table for the entire zone, the elevation of the entire zone must be made consistent with the elevation of its parts. If h_{1} and h_{2} are, respectively, the elevations of the inner and outer subzones and h the average elevation of the entire zone, then,
for zone C ,
for zone D ,
for zone E ,
for zone F ,
$h=h_{2}+0.255\left(h_{1}-h_{2}\right)$,
$h=h_{2}+0.310\left(h_{1}-h_{2}\right)$,
$h=h_{2}+0.317\left(h_{1}-h_{2}\right)$,
$h=h_{2}+0.328\left(h_{1}-h_{2}\right)$.

In conformity with the reduction tables in Special Publication No. 10 all tabular values in the following tables are expressed in units of the fourth decimal place in dynes.
Corrected reduction table for Zone C. ${ }^{\text {a }}$
[Inner radius, 68 meters; outer radius, 230 meters. Four compartments.]

Moantolevaitionof corn-partrnent	Corremion for			Correction for elevation of station-																					
	${ }_{\text {Popor }}$	$\left\|\begin{array}{c} \text { com- } \\ \text { sention } \\ \text { seition } \end{array}\right\|$		Above compartment											Below compartment										
				${ }_{\text {feet }}^{50}$	${ }_{\text {feel }}^{100}$	$\underset{\substack{150 \\ \text { feet }}}{ }$	${ }_{\text {leet }}^{200}$	${ }_{\text {feet }}^{250}$	${ }_{\text {leet }}^{300}$	${ }_{\substack{350 \\ \text { feet }}}^{\substack{\text { a }}}$	${ }_{\text {leat }}^{400}$	${ }_{\text {leet }}^{450}$	${ }_{\text {feet }}^{500}$	${ }_{\text {feet }}^{\text {foo }}$	${ }_{\substack{50 \\ \text { feet }}}$	feet	${ }_{\text {cot }}^{150}$	${ }_{\substack{200 \\ \text { feet }}}$	${ }_{\text {coset }}^{250}$	$\begin{gathered} 300 \\ \text { leet } \end{gathered}$	$\begin{array}{\|l\|l\|} \substack{350 \\ \text { feot }} \end{array}$	${ }_{\text {cot }}^{\substack{400 \\ \text { fet }}}$	${ }_{\text {cter }}^{\text {teet }}$	${ }_{\substack{\text { coet } \\ \text { loet }}}$	${ }_{\substack{\text { coeot } \\ \text { foet }}}$
$\begin{gathered} \text { Fathoms } \\ \begin{array}{c} -80 \\ -40 \end{array} \end{gathered}$			- 9		0																				
$\begin{aligned} & \text { Reet } \\ & 25 \\ & \\ & 50 \\ & 75 \\ & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & + \\ & +\frac{1}{+1} \\ & +3 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & +1 \\ & +1 \\ & +1 \end{aligned}$	$\begin{gathered} 0 \\ +1 \\ +1 \\ +1 \\ +1 \end{gathered}$	+1 +1 +2 +2 +2	$\begin{aligned} & +1 \\ & +1 \\ & +1 \\ & +2 \\ & +3 \end{aligned}$	+1 +2 +2 +2 +8 +8	$\begin{array}{r}+1 \\ +\begin{array}{r}+\frac{2}{2} \\ +2 \\ +\frac{2}{8} \\ +8\end{array} \\ \hline\end{array}$		$\begin{aligned} & +1 \\ & +\frac{2}{2} \\ & +\frac{2}{2} \\ & +8 \end{aligned}$	$\begin{aligned} & +1 \\ & +1 \\ & +2 \\ & +2 \\ & +2 \end{aligned}$	$\begin{array}{r} +1 \\ +1 \\ +\frac{1}{2} \\ +2 \end{array}$	+1 +1 $+\frac{1}{2}$ +2 $+\quad$	$\begin{aligned} & \pm 1 \\ & \pm \\ & \pm 1 \\ & +1 \\ & +2 \end{aligned}$	$\begin{aligned} & -1 \\ & -1 \\ & -1 \\ & -1 \end{aligned}$	$-_{-2}^{2}$	-								
	$\begin{gathered} +4 \\ +8 \\ +12 \\ +15 \\ +18 \end{gathered}$	$\left.\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\begin{aligned} & +4 \\ & +{ }^{4} \\ & +12 \\ & +15 \\ & +18 \end{aligned}$		+2 +2 +2 +2 +1 +1	$\begin{aligned} & +8 \\ & +8 \\ & +2 \\ & +2 \end{aligned}$	+8 +8 +2 +2 +1 0	$\begin{array}{r} +3 \\ +2 \\ +1 \\ +0 \\ \hline 1 \end{array}$	+2 +2 +1 +1 -2 -2	$\begin{aligned} & +2 \\ & +1 \\ & +0 \\ & -\frac{1}{8} \end{aligned}$	$\begin{aligned} & +2 \\ & +1 \\ & 0 \\ & 0 \end{aligned}$	+2 +0 -8 -8 -4	+1 +8 -8 -5 -5	$\begin{aligned} & 0 \\ & -1 \\ & =8 \\ & -6 \end{aligned}$	$\begin{aligned} & -2 \\ & -2 \\ & -2 \\ & -2 \end{aligned}$	$\begin{aligned} & -4 \\ & -5 \\ & -4 \\ & -4 \end{aligned}$	$\begin{aligned} & -7 \\ & -8 \\ & -8 \\ & -7 \end{aligned}$	$\begin{aligned} & -11 \\ & -12 \\ & -11 \\ & -10 \\ & -10 \end{aligned}$	$\begin{aligned} & -14 \\ & -15 \\ & -15 \\ & -14 \end{aligned}$	$\begin{aligned} & -16 \\ & -18 \\ & -18 \\ & -18 \end{aligned}$	$\begin{aligned} & -2122 \\ & \begin{array}{l} -221 \\ -212 \end{array} \end{aligned}$	-23 -25	$-_{28}^{28}$	-32	-35
			$\begin{gathered} +228 \\ +28 \\ +231 \\ +32 \\ +32 \end{gathered}$	$+1$	$-\mathbf{i}$	$\begin{aligned} & -1 \\ & -1 \\ & -1 \\ & -1 \end{aligned}$	-1 -2 -2 -3 -3	-2 -3 -4 -4 -4	-8 -4 -5 -6 -6	-4 -6 -7 -8	-5 -8 -8 -8	-6 -8 -10 -10	-8 -8 -10 -11 -12	$\begin{aligned} & -91 \\ & -13 \\ & -13 \\ & -18 \\ & -14 \end{aligned}$	$\begin{aligned} & -2 \\ & -1 \\ & -1 \\ & -1 \end{aligned}$	$\begin{aligned} & -4 \\ & -3 \\ & -2 \\ & -2 \end{aligned}$	$\begin{aligned} & -6 \\ & -5 \\ & -5 \\ & -4 \\ & -4 \end{aligned}$	$-\frac{9}{8}$ -8 -8 -8	$\begin{aligned} & -112 \\ & -10 \\ & -10 \\ & -8 \end{aligned}$	-16 -14 -12 -11 -11	-19 17 17 115 113		-28	-29 -22 -22 -20 -20	-36 -32 -20 -24
$\begin{gathered} 1800 \\ \cline { 1 - 3 } \end{gathered}$	$\begin{aligned} & +351 \\ & +351 \\ & +38 \\ & +39 \end{aligned}$	0 0 0 0 0	$\begin{gathered} +36 \\ +35 \\ +38 \\ +39 \\ +39 \end{gathered}$		-1 -1 -1 -1 -1	-2 -2 -2 -2 -2	-3 -3 -4 -4 -4	-5 -5 -5 -6 -6	-6 -7 -7 -7 -8	-8 -8 -8 -9 -9	-10 -10 -10 -10 -10	-11 -11 -12 -12 -12	-13 -13 -13 -14 -14	$\begin{aligned} & -14 \\ & -15 \\ & -16 \\ & -16 \\ & -17 \end{aligned}$	$\begin{array}{r} -1 \\ -1 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & -2 \\ & \mathbf{l}^{2} \\ & \mathbf{- 2}_{2}^{2} \\ & -2 \end{aligned}$	$\begin{aligned} & -4 \\ & -4 \\ & -4 \\ & -3 \\ & -3 \end{aligned}$	$\begin{aligned} & =8 \\ & =5 \\ & -5 \\ & -5 \end{aligned}$	$=8$ $=7$ -7 -7	-10 -10 -9 -9 -9	$\begin{aligned} & -12 \\ & -12 \\ & -12 \\ & -11 \\ & -11 \end{aligned}$			--19 -17 117 -16 16	-23 -220 -208 -19
					-1	-2	-4	-6	-8			- 13	- 14			-1	-3	-	-7	9	-10	-12	-14	$-1{ }^{-1}$	-19
	${ }_{+4}^{+4}$	-1	+ +	0	-1	-2 -3 -8	$\begin{array}{r}-4 \\ -4 \\ \hline\end{array}$	-6	-8	-10 -10	-11	-13	-14	-17	\bigcirc	-1	$-_{-3}^{3}$	-	-6		${ }_{-10}^{10}$	${ }_{-12}^{12}$	${ }_{14}^{14}$	${ }^{-15}$	-188
- 6000	${ }_{+42}^{+42}$	${ }_{-1}^{1}$	$\underset{+}{+41}$	8	-1			-6	-8 -8 -8						-	-1 -1 -1	-3 -3 -3	- 4	二 $\begin{aligned} & \text { - } \\ & -6\end{aligned}$	-8	$=10$ -10	- -12	-13	-15	-188
10000.	+43	-1	+42	-	-1	-3	-	${ }^{-6}$	-8	- 10	-11	-13						-4							
12000 14000 1800	${ }_{+44}^{+4}$	-1	$\underset{\substack{+43 \\+42 \\+4 \\ \hline}}{ }$	$\stackrel{0}{0}$	-1	$-_{-3}$	-4	${ }_{-6}{ }^{6}$	-8	-10 -10	-11	-13	-15	-18	0	-1	-3 -3 -3	- 4	二 ${ }^{8}$	-8	-10		-13 -13 -13	-15 -15 -15	-18 -18 -18
16000 18000	+ +44	Z_{2}	+ $\begin{array}{r}+42 \\ +42\end{array}$	$\stackrel{0}{0}$	-1	$-_{3}^{3}$	${ }_{-1}$	-6	-8	-10 -10	${ }_{-11}$	-13	-15	-18 -18		-1	-3		- ${ }^{6}$	-8	-	${ }_{-12}$	- 13	-15	-18

reduction tables for divided zones.

Zone C_{1}.

[Tinner radlus, 68 meters; outer radius, 130 meters. Four compartments.]

Zone C_{2}.
[Inner radius, 12 meters; outer radius, 230 meters. Four compartments.]

[Inner radius, 880 meters; outer radius, 500 meters. Six compartments.]

[Inner radius, 590 meters; outer radius, 870 meters. Eight compartmente.|]

Zone E_{2}.
[Inner radius, 870 meters; outer radius, 1280 meters. Eight compartments.]

[Inner radues, 1238 metars; outar radilus, 1880 meters. Ten compartments.]

Chapter II.-CORRECTIONS FOR TOPOGRAPHY AND ISOSTATIC COMPENSATION AND PRINCIPAL FACTS FOR GRAVITY STATIONS.

MEAN ELEVATIONS AND CORRECTIONS FOR TOPOGRAPHY AND ISOSTATIO COMPENSATION FOR SEPARATE ZONES AT STATIONS IN THE UNITED STATES.

There are given in the following tables (pp. 20 to 45) the combined effect of the topography and compensation for all zones and the separate effects of the topography and the compensation for each of the lettered zones for the 219 stations in the United States. In addition, there is given the mean elevation of the topography for each of the lettered zones for all of the stations from No. 57 to No. 219. No record of the elevation of the topography for the separate zones was made for the first 56 stations, when the topography and compensation effects were computed, and it was not deemed expedient to read the maps again to obtain that information for publication here. With the combined effect of topography and compensation given for separate zones at the first 56 stations one may get from the tables an approximate value of the elevation of the topography for the zones. The values of the effects of topography and compensation, separately and combined, are expressed in the fourth decimal place in dynes. Values resulting from interpolation from surrounding stations are indicated by italic type. (For explanation of process of interpolation, see pp. 58-65 of Special Publication No. 10.) The following table gives the radii of the zones and the number of compartments in each of them:

Designation of zone	Inner radius of Han	Outer radius of zone	Compartments
A	Meters 0	Meters 2	1
B	2	68	4
C	68	230	4
D	230	590	6
E	590	1280	8
F	1280	2290	10
G	2290	3520	12
H	3520	5240	16
I	5240	8440	20
J	8440	12400	16
K	12400	18800	20
L	18800	28800	24
M	28800	58800	14
N	58800	99000	16
0	99000	166700	28
	- 11	- 1	
18	$1 \quad 2958$	$1 \begin{array}{lll}11 & 13\end{array}$	1
17	$1 \begin{array}{lll}1 & 413\end{array}$	1. 5452	1
16	154505	$2 \quad 1153$	1
15	$\begin{array}{llll}2 & 11 & 53\end{array}$	$2 \begin{array}{lll}2 & 33 & 46\end{array}$	1
14	$2 \begin{array}{llll}2 & 33 & 46\end{array}$	30305	1
13	$3 \begin{array}{lll}3 & 03 & 05\end{array}$	41913	16
12	$4 \begin{array}{lll}4 & 19 & 13\end{array}$	$5 \quad 46 \quad 34$	10
11	$\begin{array}{llll}5 & 46 & 34\end{array}$	$7 \quad 51 \quad 30$	8
10	$7 \quad 51 \quad 30$	$10 \quad 44$	6
9	1044	1409	4
8	1409	$20 \quad 41$	4
7	2041	2641	2
6	2641	$35 \quad 58$	18
5	$35 \quad 68$	5104	16
4	5104	7213	12
3	7213	10548	10
2	10548	150 56	0
1	150	180	1

Corrections for topography and isostatic compensation，separate zones，for United States stations．

Zone	$\begin{array}{\|c\|} \text { Topog- } \\ \text { raphy } \end{array}$	$\begin{aligned} & \text { Com- } \\ & \text { Con- } \\ & \text { pen- } \\ & \text { enor } \end{aligned}$	$\begin{gathered} \text { Topog- } \\ \text { raphy } \\ \text { apd } \\ \text { com- } \\ \text { ponss- } \\ \text { tilon } \end{gathered}$	$\begin{aligned} & \text { Topog- } \\ & \text { raphy } \end{aligned}$	$\begin{aligned} & \text { Com- } \\ & \text { pen- } \\ & \text { san- } \\ & \text { tion } \end{aligned}$	$\begin{gathered} \text { Topog- } \\ \text { raphy } \\ \text { aphd } \\ \text { and } \\ \text { pems. } \\ \text { pensa- } \\ \text { tion } \end{gathered}$	$\begin{array}{\|l\|} \text { Topog- } \\ \text { raphy } \end{array}$	$\begin{aligned} & \text { Com- } \\ & \text { pen- } \\ & \text { nit } \\ & \text { tion } \end{aligned}$	$\begin{gathered} \text { Topog- } \\ \text { raphy } \\ \text { and } \\ \text { com- } \\ \text { pensa- } \\ \text { tion } \end{gathered}$	$\begin{aligned} & \text { Topog- } \\ & \text { raphy } \end{aligned}$	$\begin{aligned} & \text { Com- } \\ & \text { pan- } \\ & \text { pan } \\ & \text { tion } \end{aligned}$	$\begin{gathered} \text { Topog- } \\ \text { raphy } \\ \text { and } \\ \text { com- } \\ \text { pensa- } \\ \text { tion } \end{gathered}$	$\begin{aligned} & \text { Topog- } \\ & \text { raphy } \end{aligned}$	$\begin{aligned} & \text { Com- } \\ & \text { pen- } \\ & \text { pa- } \\ & \text { son } \end{aligned}$	$\begin{gathered} \text { Topog- } \\ \text { raphy } \\ \text { and } \\ \text { end } \\ \text { coms } \\ \text { fion } \\ \text { tion } \end{gathered}$	$\begin{aligned} & \text { Topog- } \\ & \text { raphy } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Com- } \\ \text { pen- } \\ \text { sal } \\ \text { tion } \end{gathered}\right.$	$\begin{aligned} & \text { Topogo } \\ & \text { raphy } \\ & \text { and } \\ & \text { mam. } \\ & \text { pense- } \\ & \text { tion } \end{aligned}$
	$\begin{aligned} & \text { Key West, Fla., } \\ & \text { No. } 1 \end{aligned}$			$\begin{aligned} & \text { West Palm Beach, } \\ & \text { Fla., No. } 22 \end{aligned}$			Punta Gorda，Fla， No． 3			Apalachicola，Fia， No． 4			$\begin{aligned} & \text { New Orleans, Ls., } \\ & \text { No. } 5 \end{aligned}$			$\underset{\substack{\text { Raywlle，La，} \\ \text { No．} 6}}{ }$		
$\begin{aligned} & A \\ & { }_{B}^{B} \\ & \text { C } \\ & \text { D } \end{aligned}$	$\begin{array}{r} +1 \\ 0 \\ -1 \\ 0 \\ 0 \end{array}$	0	$\begin{aligned} & +\frac{1}{0} \\ & -\quad 1 \\ & 0 \end{aligned}$	$\begin{array}{r} +2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	0 0 0	$\begin{array}{r} 2 \\ \left.+\begin{array}{r} 2 \\ 0 \\ 0 \end{array} \right\rvert\, \end{array}$	$\begin{array}{r} +1 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{array}{r} +2 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\left.\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\begin{array}{r} +2 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} +1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	00	+1 + 0 0 0 0	$\begin{aligned} & +2 \\ & +20 \\ & +4 \\ & +6 \end{aligned}$	0 0 0 10 0 0	$\begin{aligned} & +{ }^{2} \\ & +20 \\ & +\frac{1}{6} \\ & +8 \end{aligned}$
$\begin{gathered} \text { F } \\ \text { G } \\ \frac{1}{H} \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0	á	0 0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0	$\begin{aligned} & 0 \\ & \mathbf{0} \\ & \mathbf{0} \\ & \mathbf{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	
K $\left.\begin{array}{l}K \\ L \\ M \\ N \\ 0\end{array}\right]$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 +14 +42 +55	$\begin{array}{r} 0 \\ 0 \\ +14 \\ +\quad 42 \\ +55 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	+5 +20 +24 +16	$\begin{array}{r} 0 \\ +\quad 5 \\ +20 \\ +24 \\ +16 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0	$\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ +6 \end{array}$	$\begin{array}{r} 0 \\ 10 \\ 00 \\ +\quad 6 \end{array}$		$\left.\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0
18			＋ 8															
17			＋			＋ 5						＋ 3			＋ 2			
16			＋${ }^{+}$			+5 +5			＋${ }^{2}$			＋			＋ 5			－
14			＋8			＋			＋10			＋11			＋ 11			－ 8
12			＋38			＋ 39			＋ 81			＋11			＋22			
110			+48 +25			＋ 48			＋${ }^{+38}$			＋			＋ 7			
			＋15			＋15			＋16			＋12			＋2			－ 3
$\begin{aligned} & 8 \\ & 7 \end{aligned}$			＋${ }^{15}$			＋${ }^{+}$			＋ 8						＋ 7			＋88
8			＋			＋			+8 +10			+8 +10			+10 +10			＋
4			＋8			＋88			＋8			＋7			＋ 8			$+7$
8																		
${ }_{1}^{2}$			$\begin{array}{r}+\quad 2 \\ +\quad 1 \\ \hline\end{array}$			＋			＋			＋						＋
Total．			＋350			＋308			＋201			＋151			＋132			＋ 7
	$\begin{aligned} & \text { Galveston, Tex., } \\ & \text { No. } 7 \end{aligned}$			$\begin{aligned} & \text { Point Isabel, Tex., } \\ & \text { No. } 8 \end{aligned}$			$\begin{aligned} & \text { Laredo, Tex., } \\ & \text { No. } 9 \end{aligned}$			Austin，Tex．（Capitol）， No． 10			Austin，Tex．（Und－ versity），No． 11			$\begin{aligned} & \text { MeAlester, Okla, } \\ & \text { No. } 12 \end{aligned}$		
$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { D } \end{aligned}$	$\begin{array}{r} +2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	al	$\begin{array}{r} +2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	+2 +4 +4	0 0 0 0 0 0	$\begin{array}{r}\text { a } \\ +\quad 2 \\ +\quad 4 \\ \hline\end{array}$	+2 +56 +50 +21 +8	（ $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0\end{aligned}$	+2 +56 +50 +21 +88	+2 +56 +64 +31 +15	0	+9 +5 +66 +64 +15 +15	$\begin{aligned} & +2 \\ & +56 \\ & +52 \\ & +70 \\ & +40 \\ & +16 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	+2 +56 +72 + ＋+10 +16	+2 +8 +87 +85 +21	0	+2 +60 +87 +58 +521 +1
$\begin{aligned} & \text { F } \\ & \frac{\mathrm{G}}{\mathrm{H}} \\ & \frac{1}{\mathrm{~J}} \end{aligned}$	$\left.\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 2 \\ +\quad 0 \\ 0 \\ 0 \\ 0 \end{array}$	喏 $\begin{array}{r}0 \\ 0 \\ 0 \\ 0 \\ -14\end{array}$	$\begin{array}{r} +2 \\ +0 \\ 0 \\ -14 \end{array}$	$\begin{array}{r} 6 \\ +6 \\ 0 \\ 0 \end{array}$	喏 $\begin{array}{r}0 \\ 0 \\ 0 \\ 0 \\ -14\end{array}$	$\begin{array}{r} 6 \\ +6 \\ 0 \\ 0 \\ -14 \end{array}$	$\begin{array}{r} +10 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	（	＋10 0 0 0 -13
$\begin{aligned} & \frac{K}{L} \\ & \frac{M}{N} \\ & \frac{N}{N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 -1 +27	$\begin{array}{r}0 \\ 0 \\ \hline \\ \hline 12 \\ \hline\end{array}$	0 0 0 0 0 0	-14 -10 -224 -21	-4 -10 -24 -26 -21	0 0 0 0 0	-18 -22 -41 -43 -44	-18 -88 -41 -48 -44 -4.		－ 18	-18 -22 -241 -43 -44	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	－ $\begin{aligned} & -16 \\ & -22 \\ & -26 \\ & -45 \\ & -40\end{aligned}$	-16 -22 -46 -45 -40
18									－ 5			－ 8			－ 8			
17			＋2			＋12			－ 8			－			7			－ 8
16 15			＋8			＋ +18 +15			－${ }_{10}$			－ 7			－ 7			－989
14			＋ 6			＋14			－8			－ 7			－ 7			－9
			＋						－21			－18			－12			
12			± 8			－1			-10			－ 9			－9			－13
110			二 8			二 8			-13			－ 11			－11			-12
9			＋1			＋ 5			＋4			$+1$			＋1			－4
7			＋8			＋ 9			＋ 2			＋ 8			＋8			＋8
6			＋10			＋10			＋10			＋10			＋10			＋ 8
			＋10			＋			＋88			＋88			＋8			${ }_{+8}^{+8}$
3									＋ 6									
			＋81			+1 $+\quad 1$ +1			＋8			＋8			＋8			＋8
Total．			＋74			＋154			＋30			－30			－11			＋ 8

Corrections for topography and isostatic compensation, separate zones, for United States stations-Continued.

Zone	Topog- raphy	Com- pen- tion	$\begin{aligned} & \text { Topog- } \\ & \text { raphy } \\ & \text { and } \\ & \text { com- } \\ & \text { penss- } \\ & \text { tion } \end{aligned}$	Topography	$\left\lvert\, \begin{gathered} \text { Com- } \\ \text { pen- } \\ \text { sa- } \\ \text { tion } \end{gathered}\right.$	$\left.\begin{array}{\|c\|} \text { Topog- } \\ \text { raphy } \\ \text { and } \\ \text { com- } \\ \text { penss- } \\ \text { tion } \end{array} \right\rvert\,$	Topography	$\begin{aligned} & \text { Com- } \\ & \text { pen- } \\ & \text { tion } \end{aligned}$	Topog raphy and com-penss-	Topography	$\begin{gathered} \text { Com- } \\ \text { pen- } \\ \text { sa- } \\ \text { tion } \end{gathered}$	$\begin{gathered} \text { Topog- } \\ \text { raphy } \\ \text { and } \\ \text { com- } \\ \text { pensa- } \\ \text { tion } \end{gathered}$	Topography	$\begin{aligned} & \text { Com- } \\ & \text { pen- } \\ & \text { s8- } \\ & \text { tion } \end{aligned}$	Topog raphy and com-pensation	Topog. raphy	$\begin{array}{\|c} \text { Com- } \\ \text { pen- } \\ \text { Eno } \\ \text { tion } \end{array}$	Topog raphy and com-pensation
	Littie	Rock No. 13	Arl	Colun	nbis, No. 14	onn,	Atlanta	, Ga.,	No. 15	MeCo	$\begin{aligned} & \text { rmick, } \\ & \text { No. } 16 \end{aligned}$	S. C.,	Charl	$\begin{aligned} & \text { leston, } \\ & \text { No. } 18 \end{aligned}$	8. C.,	Beaufo	$\mathrm{xt}, \mathrm{~N} .$	C., No.
$\begin{aligned} & \mathbf{A} \\ & \mathbf{B} \\ & \mathbf{C} \\ & \mathbf{D} \\ & \mathbf{E} \end{aligned}$	+2 +48 +31 +12 +5	0 0 0 0 0	+2 +48 +31 +12 +5	+2 +60 +78 +48 +19	0 0 0 0 0	+2 +60 +78 +48 +19	+88 +81 +104 +800 +40	0 0 0 0 0	$+\quad 2$ +64 +104 +90 +40	+2 +56 +64 +30 +13	0 0 0 0 0	$\begin{aligned} & +2 \\ & +56 \\ & +64 \\ & +30 \\ & +13 \end{aligned}$	$\begin{array}{r} +2 \\ +4 \\ 0 \\ 0 \\ 0 \end{array}$	0 0 0 0 0	$\begin{array}{r} +2 \\ +4 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} +1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	0 0 0 0 0	
$\begin{gathered} \mathrm{F} \\ \frac{\mathrm{G}}{\mathrm{H}} \\ \frac{\mathrm{I}}{\mathrm{~J}} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	5 0 0 0 0	0 0 0 0	r + 0 0 0 0	0 0 0 0 -12	+7 $+\quad 0$ 0 0 -12	a +18 0 0 0 0	磈 $\begin{array}{r}0 \\ 0 \\ 0 \\ -16\end{array}$	19 $+\quad 0$ 0 0 -16	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 -2	$\begin{array}{r} 0 \\ 0 \\ 0 \\ -\quad 0 \\ -\quad 2 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0	0 0 0 0 0
$\begin{gathered} \mathrm{K} \\ \mathrm{~L} \\ \mathrm{M} \\ \mathrm{~N} \\ \mathrm{O} \end{gathered}$	$\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	-1 -80 -20 -30 -29	-1 -1 -20 -30 -29	0 0 0 0 0	-16 -17 -34 -39 -42	-16 -17 -34 -39 -42	0 0 0 0	-20 -24 -50 -44 -49	$=20$ $=84$ $=\quad 50$ $=44$	0 0 0 0 0	-5 $=7$ -28 -31 -37	$\begin{aligned} & =5 \\ & =7 \\ & =38 \\ & =31 \\ & -37 \end{aligned}$	0 0 0 0 0 0	0 0 0 -1 +2	$\begin{array}{r}0 \\ 0 \\ 0 \\ +\quad 1 \\ \hline\end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 +4 +45	0 0 $+\quad 4$ $+\quad 45$
18			- 5			- 7			- 9			-						14
17			-5			- 7			- 10			- 8			+ 2			$+16$
16			- 5			- 6			- 9			- 8			$+2$			+20
15			-5			- 6			- 7			$=3$			$+\quad 3$ $+\quad 4$			+27 +34
			-8			-10												
12			-7			- 5			- 1			$+7$			+21			+ 36
11			- 5			1			+ 6			+ 18			+ 24			+ 29
10			-2			$+6$			+14			+17			+21			+ 19
9			- 5			+ 3			+ 9			$+10$			$+18$			+14
8			+2												+ 18			
8			+8			$+8$			+ 6			$\begin{array}{r}\text { + } \\ + \\ \hline\end{array}$			+ 5			5
5			+8 +11			+7 +10			+7 +10			+ 7			+ 6			+6 +8
4			+11 +7			+10 +7			+7 $+\quad 7$			+10 +7			+			+8 +8
3			$+5$			$+8$												
2			+ 3			+ 3			+ 3			+ 3			+ 3			S
1			+1			+1			+ 1			+ 1			+ 1			
Total.			+12			+59			+142			+120			+159			+361
	Charlottesville, Va., No. 19			Dear Park, Md., No. 20			Washington ${ }_{3}$ D. C., C. and G.8. Office, No. 21			Washington, D. C. Smithsonian Institution, No. 22			Baltimore, Md., No. 23			$\begin{gathered} \text { Philadelphia, Pa., } \\ \text { No. } 24 \end{gathered}$		
$\begin{aligned} & \text { A } \\ & \text { II } \\ & \text { C } \\ & \mathbf{D} \end{aligned}$	+2 $+5 B$ +62 +33 +11	-	+2 +56 +62 +33 +11	$+\quad 2$ +88 +144 +209 +186	0 0 0 -8 -8	$+\quad 2$ +88 +144 +209 +178	+2 +12 $+\quad 2$ 0 0	0 0 0 0 0	+2 +12 +2 0 0	+2 +8 0 0 0	0 0 0 0 0	$\begin{array}{r} +2 \\ +8 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & +2 \\ & +24 \\ & +1 \\ & +6 \\ & 0 \end{aligned}$	0 0 0 0 0	+2 +24 +4 +6 0	$\begin{array}{r} +2 \\ +12 \\ +4 \\ 0 \\ 0 \end{array}$	0 0 0 0 0	+2 +12 +4 0 0
$\begin{gathered} \mathbf{F} \\ \mathbf{G} \\ \mathbf{H} \\ \mathbf{I} \end{gathered}$	$\begin{array}{r} 3 \\ 0 \\ 0 \end{array}$	0 0 0 0 -7	+8 +8 0 0 -7	$\begin{aligned} & +101 \\ & +\quad 52 \\ & +36 \\ & +\quad 20 \\ & +16 \end{aligned}$	-10 -12 -18 -20 -32	$\begin{aligned} & +91 \\ & +\quad 40 \\ & +20 \\ & -16 \end{aligned}$	0 0 0 0 0	0 0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 -1	$\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ -1 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0	0 0 0 0 0
$\begin{aligned} & \mathrm{K} \\ & \mathrm{~L} \\ & \mathrm{M} \\ & \mathbf{N} \\ & \mathbf{O} \end{aligned}$	0 0 0 0	-11 -21 -52 -46 -52	-11 -21 -52 -46 -52	0 0 0 0 0	-36 -69 -97 -79 -72	r -36 -89 -97 -79 -72	0 0 0 0 0	(11 $\begin{array}{r}\text { 0 } \\ -12 \\ -17 \\ -23\end{array}$	0 0 -12 -17 -23	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	($\begin{array}{r}0 \\ 0 \\ -12 \\ -17 \\ -23\end{array}$	0 0 -18 -17 -83	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	-2 -3 -20 -20 -16 -20	-2 $=3$ -20 -16 -20	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 -6 -10 -19	0 0 -6 -10 -19
18			-10			- 11			- 8			- 6			-6			-8
17			-9			- 10			- 8			-8			- 7			- 6
16			-8			- 10			- 8			-8			-9			-8
15			- 7			- 8			-8			-8			-8			- 3
14			- 7			- 8			-4			-4			-8			0
13			-10			- 11			+ 3			$+3$			$+7$			
12			$+8$			+ 8			+13			+18			+14			$+10$
11			+13						+18			+18			+19			+21
10			+18			+ 13			+17			+17			+17			$+16$
9			+12			$+10$			+11			+11			+10			+11
8			$+11$			$+10$			+18			+18			+18			
6		+ 5	+ 6	+8			+8			+8			+68
5			+88			+ 8			± 7	.		+7			± 8			+8
1			+ 7			+ 7			+6			+6			+8			$+8$
3			+8 +3			\pm			\pm			+ 4			+6			+
,			$+1$			+1 +1			$+1$			+1			+1			
Total.			+25			+413			+40			+34			+57			+93

Corrections for topography and isostatic compensation，separate zones，for United States stations－Continued．

$20 n 0$	${ }^{\text {Toppog－}}$	$\begin{gathered} \text { Com- } \\ \text { pen- } \\ \text { por } \\ \text { tion } \end{gathered}$	$\begin{aligned} & \text { Topog- } \\ & \text { raphy } \\ & \text { dern } \\ & \text { corn- } \\ & \text { pensa- } \\ & \text { tion } \end{aligned}$	$\begin{aligned} & \text { Topog- } \\ & \text { raphy } \end{aligned}$	$\begin{aligned} & \text { Com- } \\ & \text { pen- } \\ & \text { ption } \\ & \text { tion } \end{aligned}$	$\begin{aligned} & \text { Topog- } \\ & \text { raphy } \\ & \text { and } \\ & \text { eom- } \\ & \text { penss- } \\ & \text { tlon } \end{aligned}$	$\begin{aligned} & \text { Topog- } \\ & \text { raphy } \end{aligned}$	$\begin{aligned} & \text { Com- } \\ & \text { pen- } \\ & \text { sal } \\ & \text { lion } \end{aligned}$	$\left.\begin{gathered} \text { Topog- } \\ \text { raphy } \\ \text { and } \\ \text { come } \\ \text { pensi- } \\ \text { ton } \end{gathered} \right\rvert\,$	$\begin{aligned} & \text { Topog } \\ & \text { raphy } \end{aligned}$	$\begin{gathered} \text { Com- } \\ \text { pen- } \\ \text { san- } \\ \text { sion } \end{gathered}$	$\begin{gathered} \text { Topog- } \\ \text { rophy } \\ \text { and } \\ \text { anme } \\ \text { pensar } \\ \text { peiton } \end{gathered}$	$\begin{aligned} & \text { Topog- } \\ & \text { raphy } \end{aligned}$	$\begin{aligned} & \text { Com- } \\ & \text { pon- } \\ & \text { s. } \\ & \text { sion } \end{aligned}$	$\begin{gathered} \text { Topog- } \\ \text { raphy } \\ \text { and } \\ \text { com- } \\ \text { pense- } \\ \text { tion } \end{gathered}$	Topog-	$\begin{aligned} & \text { Com- } \\ & \text { pan- } \\ & \text { sal } \\ & \text { tion } \end{aligned}$	$\begin{aligned} & \text { Topog- } \\ & \text { rophy } \\ & \text { mad } \\ & \text { cem- } \\ & \text { pensa- } \\ & \text { ition } \end{aligned}$
	$\begin{aligned} & \text { Princeton, N. J., } \\ & \text { No. } 25 \end{aligned}$			$\begin{aligned} & \text { Hoboken, N. J., } \\ & \text { No. } 26 \end{aligned}$			$\begin{aligned} & \text { Now Yorts, N. Y., } \\ & \text { No. } 27 \end{aligned}$			Worcester，Mass．， No． 28			$\begin{aligned} & \text { Boston, Mass., } \\ & \text { No. } 29 \end{aligned}$			Cambridge，Mass．， No． 30		
$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \hline \mathbf{E} \end{aligned}$	$\begin{array}{r} +2 \\ +40 \\ +16 \\ +6 \\ 0 \end{array}$	0 0 0 0 0 0	$\begin{aligned} & +2 \\ & +40 \\ & +16 \\ & +\quad 8 \\ & \hline \quad 0 \end{aligned}$	$\begin{array}{r} +2 \\ +8 \\ +8 \\ 0 \end{array}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{array}{r} +2 \\ +8 \\ +8 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & +2 \\ & +2 \% \\ & +7 \\ & +2 \\ & +2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & +2 \\ & \pm 7 \\ & +\quad 7 \\ & +\quad 2 \end{aligned}$	$\begin{aligned} & +2 \\ & +56 \\ & +641 \\ & +311 \\ & +11 \end{aligned}$		$\begin{aligned} & +2 \\ & +56 \\ & +631 \\ & +311 \end{aligned}$	$\begin{aligned} & +2 \\ & +16 \\ & +4 \\ & +1 \\ & +1 \end{aligned}$	$\begin{aligned} & 01 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & +2 \\ & +16 \\ & +\quad 4 \\ & +\quad 1 \end{aligned}$	$\begin{array}{r} +2 \\ +12 \\ \mathbf{2}^{2} \\ 0 \\ 0 \end{array}$	［	$\begin{array}{r} \\ +\quad 2 \\ +\quad 12 \\ 0 \\ 0 \\ 0 \end{array}$
$\begin{gathered} \text { F } \\ \frac{G}{H} \\ \frac{1}{J} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0	0 0 0 0 0 0		$\begin{aligned} & 0 \\ & 0 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{array}{r} 7 \\ +0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ -10 \end{array}$	$\begin{array}{r} +7 \\ 0 \\ -10 \end{array}$	II 0 0 ii 0 0	$\left.\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0	0 0 0 0 -2	$\begin{array}{r} 0 \\ 0 \\ -\quad 8 \end{array}$
$\begin{aligned} & \frac{K}{L} \\ & \frac{M}{N} \\ & \frac{M}{N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	（ry $\begin{array}{r}\text { n } \\ -11 \\ -11 \\ -16 \\ -22\end{array}$	$\begin{array}{r}\square \\ -11 \\ -16 \\ -18 \\ \hline 88\end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	（ $\begin{array}{r}0 \\ \mathbf{y} \\ -12 \\ -18 \\ -25\end{array}$	0 0 -18 -18 -285	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	伎 $\begin{array}{r}0 \\ 0 \\ -12 \\ -18 \\ -28\end{array}$	$\begin{array}{r} 0 \\ 0 \\ -12 \\ -18 \\ -26 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & n \end{aligned}$	-13 -14 -27 -25 -28	$\begin{aligned} & =13 \\ & =14 \\ & =27 \\ & =28 \end{aligned}$	$\begin{aligned} & 10 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ -4 \\ -12 \\ -10 \\ \hline \end{array}$	$\begin{array}{r} 0 \\ 0 \\ -\quad 4 \\ =12 \\ -10 \end{array}$	0 0 0 0 0	-8 $=3$ $=9$ -15 -14	＝ 8 $=8$ $=8$ $=16$ $=14$
18						－ 0			－			－						
17			－			－ 5												
15			＝ 1			－ 1			¢			＝ 8			$=\frac{1}{2}$			2
14			＋ 1			＋${ }^{+}$			＋			－ 2			－ 2			二 2
13																		
12			＋80			＋ 2			＋ 21			＋ 24			26			
10			＋21			$+818$			+21 +18						+25 +18			＋85
9			＋11			$+11$			＋ 11			＋12			＋ +18 +18			+18 +18
8																		
6						＋ 6												
${ }_{5}^{6}$						＋88			＋${ }^{8}$			＋${ }^{8}$						${ }^{6}$
4			＋6			＋8			＋ 8			＋8			＋			＋
			$+$			＋ 8												
			$\pm+$			＋			＋${ }^{+}$			\pm			＋			$+1$
Total．			＋130			＋79			＋106			＋178			＋133			＋101
	Calais，Mo．，No． 31			Itheas，N．Y．，No． 32			Cleveland，Ohio， No． 33			$\begin{gathered} \text { Cincinnati, Ohio, } \\ \text { No. } 34 \end{gathered}$			$\begin{aligned} & \text { Terre Hsute, Ind., } \\ & \text { No. 35 } \end{aligned}$			Chicago，III．，No． 36		
$\begin{aligned} & \mathbf{A} \\ & \mathbf{B} \\ & \mathbf{C} \\ & \mathbf{D} \\ & \hline \mathbf{E} \end{aligned}$	$\begin{array}{r} +2 \\ +25 \\ +4 \\ +4 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & +2 \\ & +\quad 25 \\ & +\quad 4 \\ & +\quad 1 \end{aligned}$	+2 +60 +88 +59 +27 +8	0 0 0 0 0	+8 +80 +88 +59 +27	+2 +58 +78 +48 +20	0 0 0	+2 +58 +78 +48 +20	+2 +80 +84 +85 +22 +28	0 0 0 0 0 0	+2 +60 +84 +57 +28	+2 + ＋ +60 +68 +12 +12	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	+2 +56 +60 +28 +12	$\begin{aligned} & +2 \\ & +56 \\ & +72 \\ & +42 \\ & +16 \end{aligned}$	\％	$+{ }^{2}$ ++56 +72 +14 +16
$\begin{gathered} \frac{F}{G} \\ \frac{H}{H} \\ \frac{1}{3} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 6 \\ +\begin{array}{l} 6 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \end{array}$	$\left.\begin{array}{\|r\|} 0 \\ 0 \\ 0 \\ 10 \\ -10 \end{array} \right\rvert\,$	$\begin{array}{r} +6 \\ 0 \\ 0 \\ 0 \\ -16 \end{array}$	$\begin{array}{r} +10 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	｜r $\begin{array}{r}0 \\ 0 \\ 0 \\ 0 \\ -16\end{array}$	+10 0 0 0 -16	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	｜r $\begin{array}{r}0 \\ 0 \\ 0 \\ 0 \\ -11\end{array}$		$\begin{array}{r} +2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\left.\begin{array}{r} 0 \\ 0 \\ 0 \\ -8 \end{array} \right\rvert\,$	$\begin{array}{r} +2 \\ +0 \\ 0 \\ 0 \\ -8 \end{array}$	$\begin{array}{r} +4 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	0 0 0 0 -8	＋ + 0 0 0 -7
$\begin{aligned} & \frac{K}{Z} \\ & \frac{M}{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	（ $\begin{array}{r}0 \\ 0 \\ -8 \\ \hline \\ -15 \\ \hline\end{array}$	$\begin{array}{r}0 \\ 0 \\ = \\ = \\ \hline\end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	-20 -32 -85 -56 -58	-20 -32 -30 -56 -58 -8	0 0 0 0 0	－ $\begin{aligned} & -20 \\ & -24 \\ & -42 \\ & -41 \\ & -45\end{aligned}$	-20 -24 -42 -41 -45	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	俍 $\begin{aligned} & -17 \\ & -20 \\ & -42 \\ & -50 \\ & -48\end{aligned}$	-17 -20 -42 -60 -48	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		-10 -12 -30 -37 -35	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$=9$ $=-11$ -22 -23 -23	－ 9 -11 -226 -23
18			－ 8			－8			－9			－8			－6			－6
176			－8			－8			-10			－88			－ 6			$=6$
15						－ 7			－11			－8			－ 6			－8
14			－ 3			－ 7			－11			－8			－ 7			－8
13			－ 8			－ 6			－18			－15			－16			
12			＋ 9			＋ 7			－10			－8			－9			－10
11			＋ 18			＋8			－ 5			－ 3			－7			
10						＋11			＋4			＋ 4			－2			－1
9			＋ 13			＋8			＋ 5			＋ 4			＋1			$+1$
8																		
						＋8			＋8			＋8						
5						＋ 6			＋ 7			＋ 7			＋			8
			+5 +6			+7 +8			＋8			＋981			＋8			＋${ }^{+8}$
						± 8						δ			＋ 8			＋ 5
			＋ 1			＋1			＋			＋1			＋1			＋1
Total．			＋101			＋49			－ 2			＋23			＋ 8			＋74

Corrections for topography and isostatic compensation, separate zones, for United States stations-Continued.

Zone	$\begin{aligned} & \text { Topog- } \\ & \text { raphy } \end{aligned}$	$\begin{aligned} & \text { Com- } \\ & \text { pen- } \\ & \text { son } \\ & \text { tion } \end{aligned}$	Topography and com-pensation	$\begin{aligned} & \text { Topog- } \\ & \text { raphy } \end{aligned}$	$\begin{gathered} \text { Com- } \\ \text { pen- } \\ \text { sa- } \\ \text { tion } \end{gathered}$	$\begin{gathered} \text { Topog- } \\ \text { raphy } \\ \text { and } \\ \text { com- } \\ \text { pernsa- } \\ \text { tion } \end{gathered}$	$\begin{aligned} & \text { Topog- } \\ & \text { raphy } \end{aligned}$	$\begin{aligned} & \text { Come } \\ & \text { pen- } \\ & \text { ss- } \\ & \text { tion } \end{aligned}$	Topog raphy and com-pensation	Topog- raphy	$\begin{aligned} & \text { Com- } \\ & \text { pen- } \\ & \text { ss- } \\ & \text { tion } \end{aligned}$	$\begin{gathered} \text { Topog- } \\ \text { raphy } \\ \text { and } \\ \text { com- } \\ \text { pens- } \\ \text { tion- } \end{gathered}$	Topog. raphy	$\begin{aligned} & \text { Com- } \\ & \text { pen- } \\ & \text { sa- } \\ & \text { tion } \end{aligned}$	Topog raphy and com-pensation	Topog raphy	Com-pen-sation	Topography and com-pensation
	Madison, Wis No. 37			at. Louls, MO., No. 38			Kansas City, Mo., No. 39			Ellsworth, Kans., No. 40			$\begin{gathered} \text { Wallace, Kans., } \\ \text { No. } 41 \end{gathered}$			Colorado Springs, Colo., No. 42		
$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & +2 \\ & +62 \\ & +95 \\ & +70 \\ & +30 \end{aligned}$	0 0 0 0 0	$\begin{aligned} & +2 \\ & +62 \\ & +95 \\ & +70 \\ & +30 \end{aligned}$	$\begin{aligned} & +2 \\ & +58 \\ & +60 \\ & +30 \\ & +13 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & +2 \\ & +56 \\ & +60 \\ & +30 \\ & +13 \end{aligned}$	$\begin{aligned} & +2 \\ & +84 \\ & +97 \\ & +722 \\ & +30 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & +2 \\ & +64 \\ & +97 \\ & +72 \\ & +30 \end{aligned}$	$\begin{aligned} & +2 \\ & +68 \\ & +124 \\ & +140 \\ & +82 \end{aligned}$	0 0 0 0 0	$\begin{aligned} & +2 \\ & +68 \\ & +124 \\ & +140 \\ & +82 \end{aligned}$	$\begin{aligned} & +2 \\ & +68 \\ & +152 \\ & +252 \\ & +256 \end{aligned}$	0 0 0 $-\quad 8$ -8	$\begin{aligned} & +2 \\ & +68 \\ & +152 \\ & +246 \\ & +248 \end{aligned}$	$\begin{aligned} & +2 \\ & +68 \\ & +164 \\ & +312 \\ & +424 \end{aligned}$	0 0 $-\quad 4$ $-\quad 6$ -16	$\begin{aligned} & +2 \\ & +68 \\ & +160 \\ & +306 \\ & +408 \end{aligned}$
$\begin{gathered} \frac{\mathrm{H}}{\mathrm{G}} \\ \mathrm{H} \\ \mathrm{I} \\ \mathrm{I} \end{gathered}$	$\begin{array}{r} +10 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	估 $\begin{array}{r}0 \\ 0 \\ 0 \\ 0 \\ -16\end{array}$	$\begin{array}{r} +10 \\ 0 \\ 0 \\ 0 \\ -16 \end{array}$	0 0 0 0 0	0 0 0 0 -3	$\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ -\quad 3 \end{array}$	$\begin{array}{r} +16 \\ 0 \\ 0 \\ 0 \end{array}$	($\begin{array}{r}0 \\ 0 \\ 0 \\ 0 \\ -16\end{array}$	$\begin{array}{r} +16 \\ 0 \\ 0 \\ 0 \\ -16 \end{array}$	+80 +10 +16 +20 +10	伎 $\begin{array}{r}0 \\ 0 \\ -16 \\ -20 \\ -16\end{array}$	$\begin{array}{r} +40 \\ +12 \\ 0 \\ 0 \\ -16 \end{array}$	+150 +84 +48 +60 +24	$\begin{aligned} & =10 \\ & =12 \\ & =16 \\ & =40 \\ & -40 \end{aligned}$	$\begin{aligned} & +140 \\ & +72 \\ & +32 \\ & +20 \\ & +16 \end{aligned}$	$\begin{aligned} & +351 \\ & +216 \\ & +159 \\ & +138 \\ & +63 \end{aligned}$	$\left\lvert\, \begin{aligned} & -20 \\ & -24 \\ & -32 \\ & -80 \\ & -74 \end{aligned}\right.$	$\begin{aligned} & +331 \\ & +192 \\ & +127 \\ & +78 \\ & +11 \end{aligned}$
$\begin{aligned} & \mathbf{K} \\ & \mathbf{L} \\ & \mathbf{M} \\ & \mathbf{N} \\ & \mathbf{O} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	-20 -24 -57 -48 49	-20 -24 -57 -48 -19	0 0 0 0	-12 -13 -28 -32 -33	-12 -13 -28 -32 -33	0 0 0	-20 -24 -53 -47 -55	$\begin{aligned} & -20 \\ & =-24 \\ & =-47 \\ & -55 \end{aligned}$	0 0 $+\quad 2$ 0 0	-20 -47 -89 -85 -95	-20 $=$ $=$ $=87$ -85 -85	+10 +12 $+\quad 6$ 0 0	[$\begin{aligned} & -50 \\ & -84 \\ & -217 \\ & -192 \\ & -169\end{aligned}$	-40 $=72$ -211 -192 -169	+52 +31 +30 +17 +13	-123 -178 -399 -359 -352	-71 -147 -369 -342 -339
$\begin{aligned} & 18 \\ & 17 \\ & 10 \\ & 15 \\ & 14 \end{aligned}$			-7 $=7$ $=8$ $=8$ -9			-5 $=5$ $=5$ $=7$ -8			$\begin{aligned} & -10 \\ & -10 \\ & -10 \\ & -11 \\ & -11 \end{aligned}$			-19 -19 -19 -19 -20			$\begin{aligned} & =36 \\ & =36 \\ & =36 \\ & =37 \\ & -39 \end{aligned}$			$\begin{array}{r}-68 \\ =69 \\ =69 \\ -68 \\ \hline 68\end{array}$
$\begin{array}{r} 13 \\ 12 \\ 11 \\ 10 \\ 9 \end{array}$			$\begin{array}{r}-16 \\ -10 \\ =3 \\ -8 \\ -8 \\ \hline 1\end{array}$			-16 -10 $=8$ $=8$ -2			-20 -13 -14 $=14$ -8			$\begin{array}{r}-44 \\ =86 \\ =19 \\ -15 \\ \hline\end{array}$			69 -38 $-\quad 25$ -16			-88 $=88$ $=170$ $-\quad 0$
$\begin{aligned} & 5 \\ & 4 \end{aligned}$			+6 +7 +8 +8 +7			$\begin{aligned} & +2 \\ & +7 \\ & +8 \\ & +10 \\ & +7 \end{aligned}$			-1 +8 +9 +11 +7			$\begin{aligned} & +\quad 3 \\ & +\quad 7 \\ & +\quad 9 \\ & +\quad 10 \\ & +\quad 8 \end{aligned}$			$+\quad 8$ $+\quad 7$ $+\quad 9$ $+\quad 10$			$\begin{aligned} & +8 \\ & +7 \\ & +8 \\ & +8 \end{aligned}$
$\begin{aligned} & 2 \\ & I \end{aligned}$			$\begin{aligned} & +5 \\ & +3 \\ & +1 \end{aligned}$			+7 +6 +1			+5 +8 +1			$\begin{aligned} & +5 \\ & +\quad 5 \\ & +1 \end{aligned}$			+8 $+\quad 5$ $+\quad 1$			+8 +8 $+\quad 1$
Total.			+31			+10			-12			- 40			- 5			- ${ }^{1}$
	Pikes Peak, Colo., No. 43			Denver, Colo., No. 44			$\begin{gathered} \text { Gunnison, Colo., } \\ \text { No. } 45 \end{gathered}$			Grand Junction, Colo., No. 46			$\text { Green River } \underset{\text { No. } 47}{ } \text { Utah, }$			Pleasant Valley Junction, Utah, No. 48		
$\begin{aligned} & \text { A } \\ & \text { I } \\ & \text { C } \\ & \text { D } \end{aligned}$	$\begin{aligned} & +2 \\ & +80 \\ & +165 \\ & +325 \\ & +545 \end{aligned}$	11 -8 $=8$ -15 -25	$+\quad 7$ $+\quad 72$ +157 +310 +520	$\begin{aligned} & +2 \\ & +68 \\ & +164 \\ & +306 \\ & +392 \end{aligned}$	0 -1 $-\quad 6$ -8	$\begin{aligned} & +2 \\ & +68 \\ & +680 \\ & +300 \\ & +389 \end{aligned}$	$\begin{aligned} & +2 \\ & +68 \\ & +168 \\ & +330 \\ & +488 \end{aligned}$	$\left\lvert\, \begin{array}{r} 6 \\ -\quad 0 \\ -\quad 6 \\ -\quad 16 \end{array}\right.$	$\begin{aligned} & +2 \\ & +68 \\ & +164 \\ & +324 \\ & +472 \end{aligned}$	$\begin{aligned} & +2 \\ & +68 \\ & +164 \\ & +288 \\ & +344 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ -\quad 4 \\ -8 \end{array}$	$\begin{aligned} & +2 \\ & +68 \\ & +160 \\ & +228 \\ & +336 \end{aligned}$	$\begin{aligned} & +2 \\ & +68 \\ & +156 \\ & +276 \\ & +310 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ 0 \\ -\quad 8 \\ -\quad 8 \end{array}$	$\begin{aligned} & \pm 2 \\ & +68 \\ & +156 \\ & +270 \\ & +302 \end{aligned}$	$\begin{aligned} & +2 \\ & +68 \\ & +164 \\ & +324 \\ & +467 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ -\quad 4 \\ -\quad 6 \\ -16 \end{array}$	$\begin{aligned} & +2 \\ & +68 \\ & +160 \\ & +318 \\ & +451 \end{aligned}$
$\begin{gathered} \text { II } \\ \text { II } \\ \text { II } \\ I \end{gathered}$	$\begin{aligned} & +639 \\ & +552 \\ & +498 \\ & +503 \\ & +298 \end{aligned}$	-37 -80 $=55$ -91	$\begin{aligned} & +602 \\ & +5412 \\ & +443 \\ & +8201 \\ & +201 \end{aligned}$	$\begin{aligned} & +310 \\ & +192 \\ & +130 \\ & +100 \\ & +\quad 48 \end{aligned}$	- 20 $=24$ $=32$ $=40$ -48	+290 +298 +168 +60 0	$\begin{aligned} & +450 \\ & +309 \\ & +240 \\ & +210 \\ & +103 \end{aligned}$	-20 -24 -38 -80 -81	$\begin{aligned} & +430 \\ & +285 \\ & +202 \\ & +130 \\ & +\quad 22 \end{aligned}$	$\begin{aligned} & +249 \\ & +136 \\ & +89 \\ & +75 \\ & +\quad 44 \end{aligned}$	$\begin{aligned} & -10 \\ & =18 \\ & =23 \\ & =42 \\ & -51 \end{aligned}$	$\begin{aligned} & +239 \\ & +120 \\ & +66 \\ & +\quad 33 \\ & +\quad 7 \end{aligned}$	$\begin{aligned} & +209 \\ & +109 \\ & +72 \\ & +\quad 67 \\ & +\quad 32 \end{aligned}$	$\begin{aligned} & =10 \\ & =12 \\ & =16 \\ & =40 \\ & -48 \end{aligned}$	$\begin{aligned} & +199 \\ & +97 \\ & +56 \\ & +27 \\ & -16 \end{aligned}$	+419 +278 +208 +175 +84	-20 -24 -34 $=74$ -80	+399 +254 +174 +101 $+\quad 4$
$\begin{aligned} & \mathrm{K} \\ & \mathrm{~L} \\ & \mathrm{M} \\ & \mathrm{~N} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & +221 \\ & +152 \\ & +142 \\ & +50 \\ & +42 \end{aligned}$	-142 -184 -432 -381 -371	+79 $+\quad 79$ $=320$ $=333$ -329	$\begin{aligned} & +40 \\ & +22 \\ & +21 \\ & +18 \\ & +18 \end{aligned}$	$\begin{array}{r} -80 \\ -120 \\ -383 \\ -389 \\ -364 \end{array}$	- 40 $=98$ -382 -376 -346	$\begin{aligned} & +87 \\ & +53 \\ & +42 \\ & +31 \\ & +17 \end{aligned}$	$\left[\begin{array}{l} -143 \\ -221 \\ -568 \\ -493 \\ -426 \end{array}\right.$	$\begin{aligned} & -56 \\ & -168 \\ & -526 \\ & -462 \\ & -409 \end{aligned}$	$\begin{aligned} & +33 \\ & +24 \\ & +10 \\ & +\quad 8 \\ & +14 \end{aligned}$	$\begin{aligned} & -98 \\ & -156 \\ & -401 \\ & -382 \\ & -363 \end{aligned}$	$\begin{aligned} & -65 \\ & -132 \\ & -391 \\ & -374 \\ & -349 \end{aligned}$	$\begin{aligned} & +22 \\ & +11 \\ & +12 \\ & +10 \\ & 0 \end{aligned}$	$\begin{aligned} & -73 \\ & -115 \\ & -341 \\ & -311 \\ & -324 \end{aligned}$	$\begin{aligned} & =\$ 1 \\ & -101 \\ & -329 \\ & -295 \\ & -324 \end{aligned}$	$\begin{aligned} & +91 \\ & +61 \\ & +49 \\ & +\quad 17 \end{aligned}$	-140 -203 -427 -360 -319	-49 -142 -378 -343 -315
$\begin{aligned} & 18 \\ & 17 \\ & 16 \\ & 15 \\ & 14 \end{aligned}$			$\begin{aligned} & =68 \\ & \text { = } 68 \\ & =64 \\ & =59 \end{aligned}$			$\begin{aligned} & -68 \\ & =67 \\ & =67 \\ & =64 \\ & -63 \end{aligned}$			$\begin{aligned} & =76 \\ & =74 \\ & =68 \\ & =64 \\ & -62 \end{aligned}$			$\begin{aligned} & =74 \\ & =73 \\ & =72 \\ & =68 \\ & -65 \end{aligned}$			$\begin{aligned} & =65 \\ & =70 \\ & =67 \\ & =68 \end{aligned}$			- 59 $=61$ $=683$ $=64$ -65
$\begin{gathered} 13 \\ 12 \\ 11 \\ 10 \\ 10 \end{gathered}$			$\begin{aligned} & -\quad 83 \\ & =\quad 48 \\ & =\quad 17 \\ & =\quad 0 \end{aligned}$			-84 $=18$ $=17$ -17			$\begin{array}{r} -97 \\ =52 \\ =33 \\ +\quad 18 \end{array}$			$\begin{aligned} & -101 \\ & =55 \\ & =34 \\ & +\quad 16 \end{aligned}$			$\begin{aligned} & -108 \\ & =59 \\ & =35 \\ & \hline+12 \end{aligned}$			$\begin{aligned} & -104 \\ & =88 \\ & =86 \\ & =14 \\ & +\quad 4 \end{aligned}$
$\begin{aligned} & 7 \\ & 6 \\ & 5 \\ & 4 \end{aligned}$			$\begin{aligned} & +9 \\ & +\quad 8 \\ & +88 \\ & +\quad 8 \end{aligned}$			$\begin{aligned} & +8 \\ & +\quad 7 \\ & +\quad 8 \\ & +\quad 8 \end{aligned}$			$\begin{aligned} & +11 \\ & +\quad 7 \\ & +\quad g \\ & +\quad 8 \end{aligned}$			$\begin{aligned} & +11 \\ & +7 \\ & +\quad 9 \\ & +8 \\ & +\quad 8 \end{aligned}$			$\begin{aligned} & +11 \\ & +\quad 8 \\ & +\quad 9 \\ & +\quad 8 \\ & +\quad 8 \end{aligned}$			$\begin{aligned} & +11 \\ & +\quad 7 \\ & +\quad 8 \\ & +8 \end{aligned}$
$\begin{aligned} & 3 \\ & 2 \\ & 1 \end{aligned}$		-	$\begin{array}{r} +\quad 5 \\ +\quad 3 \\ +\quad 1 \end{array}$			$\begin{array}{r} +5 \\ +\quad 3 \\ +\quad 1 \end{array}$			$\begin{aligned} & +5 \\ & +\quad 5 \\ & +\quad 1 \end{aligned}$			$\begin{array}{r} +5 \\ +\quad 3 \\ +1 \end{array}$			$\begin{aligned} & +5 \\ & +5 \\ & +1 \end{aligned}$			+8 $+\quad 8$ $+\quad 1$
Total.			+1871			-148			-11			-511			-434			+238

Corrections for topography and isostatic compensation, separate zones, for Uniled States stations-Continued.

Mean elevations and corrections for topography and ioostatic compensation, separate zones, for United States stations-Contd.

Zono	Elevar tion in feet	Topog raphy	Com-pensation	Topog- raphy and com- pensa- tion	Elevation in feot	Topog. raphy	Compensa tion	$\begin{gathered} \text { Topog- } \\ \text { raphy } \\ \text { and } \\ \text { com- } \\ \text { penss } \\ \text { tion } \end{gathered}$	$\begin{gathered} \text { Eleva- } \\ \text { tion in } \\ \text { feet } \end{gathered}$	Topography	$\begin{aligned} & \text { Com- } \\ & \text { pensa- } \\ & \text { tion } \end{aligned}$	$\begin{gathered} \text { Topog- } \\ \text { raphy } \\ \text { and } \\ \text { com- } \\ \text { penss- } \\ \text { tion } \end{gathered}$	Eleva tion in feet	Topography	Com-pensation	Topog-raphyand pensor tion
	Mount Hamifin, Cal, No. 55				Seattle, Wash. (high school), No. 56				Iron River, Mich., No. 57				Ely, Minn., No. 58			
$\begin{aligned} & A \\ & \text { B } \\ & \text { C } \\ & \text { D } \\ & \text { E } \end{aligned}$		$\begin{aligned} & +2 \\ & +68 \\ & +156 \\ & +246 \\ & +282 \end{aligned}$	0 0 0 -6 -8	$\begin{aligned} & +\quad 2 \\ & +\quad 68 \\ & +156 \\ & +220 \\ & +274 \end{aligned}$		+2 +44 +18 +10 +3	0 0 0 0 0	$\begin{aligned} & +\quad 2 \\ & +44 \\ & +18 \\ & +\quad 10 \\ & +\quad 3 \end{aligned}$	$\begin{aligned} & 1501 \\ & 1500 \\ & 1500 \\ & 1500 \\ & 1500 \end{aligned}$	+82 +84 +124 +138 +80	0 0 0 0 0	$\begin{aligned} & +2 \\ & +64 \\ & +124 \\ & +138 \\ & +80 \end{aligned}$	$\begin{aligned} & 1470 \\ & 1470 \\ & 1470 \\ & 1470 \\ & 1470 \end{aligned}$	$\begin{aligned} & +2 \\ & +64 \\ & +124 \\ & +138 \\ & +80 \end{aligned}$	0 0 0 0 0	$\begin{aligned} & +2 \\ & +64 \\ & +124 \\ & +138 \\ & +80 \end{aligned}$
$\begin{gathered} \mathbf{F} \\ \mathbf{G} \\ \mathbf{H} \\ \frac{\mathbf{J}}{\mathbf{J}} \end{gathered}$		+194 +104 +69 +53 +32	-10 -12 -16 -20 -25	+184 $+\quad 92$ +53 $+\quad 33$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1580 \\ & 1580 \\ & 1580 \\ & 1590 \\ & 1580 \end{aligned}$	$\begin{array}{r} +40 \\ +12 \\ +18 \\ +\quad 20 \\ 0 \end{array}$	0 0 -16 -20 -16	+ $+\quad 40$ +12 0 -16	$\begin{aligned} & 1470 \\ & 1470 \\ & 1470 \\ & 1480 \\ & 1060 \end{aligned}$	$\begin{array}{r} +30 \\ +12 \\ +16 \\ +\quad 20 \\ 0 \end{array}$	0 0 -16 -20 -16	$\begin{array}{r} +30 \\ +12 \\ 0 \\ 0 \\ -16 \end{array}$
$\begin{aligned} & \mathrm{K} \\ & \mathrm{~L} \\ & \mathrm{M} \\ & \mathrm{~N} \\ & \mathbf{O} \end{aligned}$		+20 $+\quad 0$ 0 0 0	-28 -18 -24 -16 0	1 $=\quad 8$ $=\quad 24$ $-\quad 16$		0 0 0 0 0	0 -11 -19 -95 -89	10 $=1$ $=19$ $=85$	$\begin{array}{r} 1530 \\ 1580 \\ 1470 \\ 1200 \\ 800 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	-80 $=-82$ $=84$ -63 -50	$\begin{aligned} & -20 \\ & =42 \\ & =84 \\ & =63 \\ & -50 \end{aligned}$	$\begin{aligned} & 1600 \\ & 1580 \\ & 1550 \\ & 1240 \\ & 1180 \end{aligned}$	0 0 0 0 0 0	-20 -33 -85 -69 -67	$\begin{aligned} & =20 \\ & =33 \\ & =85 \\ & =69 \\ & =67 \end{aligned}$
$\begin{aligned} & 18 \\ & 17 \\ & 16 \\ & 15 \\ & 14 \end{aligned}$				$\begin{array}{\|} \pm & 2 \\ -\quad 0 \\ +\quad 2 \\ +\quad 8 \end{array}$				$=14$ $=11$ $=10$ $=11$				$=6$ $=66$ $=7$				$\begin{aligned} & -12 \\ & =12 \\ & =12 \\ & =11 \end{aligned}$
$\begin{aligned} & 13 \\ & 12 \\ & 11 \\ & 10 \\ & \text { E } \end{aligned}$				$\begin{aligned} & +22 \\ & +19 \\ & +20 \\ & +15 \\ & +10 \end{aligned}$				-21 $=18$ $-\quad 8$ $+\quad 4$				- 18 $=12$ $=\quad 7$ -88				-16 $=18$ $=11$ $=10$
$\begin{aligned} & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \end{aligned}$				$\left\|\begin{array}{rr} + & 16 \\ + & 10 \\ + & 8 \\ + & 9 \\ + & 8 \end{array}\right\|$			$\begin{aligned} & +10 \\ & +\quad 6 \\ & +\quad 8 \\ & +\quad 7 \end{aligned}$			+88 +88 +88 +6				$\begin{aligned} & \pm 1 \\ & +8 \\ & +8 \\ & +8 \end{aligned}$
$\begin{aligned} & 8 \\ & 2 \\ & 1 \end{aligned}$				$\begin{aligned} & +\quad 6 \\ & +\quad 1 \end{aligned}$				$\begin{aligned} & +3 \\ & +3 \\ & +3 \end{aligned}$				$\begin{aligned} & \pm 1 \\ & +1 \end{aligned}$				+1 +1 +8
Total...				$+1200$				-181				+143				$+83$
	Pombina, N. Dak., No. 50				Mitchell, 8. Dak., No. 60				Sweetwater, Tex., No. 61				Kerrville, Tex., No. 62			
$\begin{aligned} & \mathbf{A} \\ & \mathbf{B} \\ & \mathbf{C} \\ & \mathbf{D} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & 796 \\ & 7 \times 1 \\ & 776 \\ & 7906 \end{aligned}$	+2 +60 +88 +60 +24	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	+2 +60 +88 +60 +24	$\begin{aligned} & 1830 \\ & 1340 \\ & 1340 \\ & 1330 \\ & 1320 \end{aligned}$	$\begin{aligned} & +2 \\ & +64 \\ & +116 \\ & +123 \\ & +85 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & +2 \\ & +64 \\ & +116 \\ & +123 \\ & +68 \end{aligned}$	$\begin{aligned} & 219 \\ & 2100 \\ & 2150 \\ & 2100 \\ & 700 \end{aligned}$	$\begin{aligned} & +\quad 2 \\ & +68 \\ & +136 \\ & +191 \\ & +156 \end{aligned}$	$\begin{array}{r}0 \\ 0 \\ 0 \\ -8 \\ \hline\end{array}$	$\begin{aligned} & +2 \\ & +68 \\ & +138 \\ & +191 \\ & +148 \end{aligned}$	$\begin{aligned} & 1633 \\ & 1600 \\ & 1609 \\ & 1667 \\ & 1700 \end{aligned}$	$\begin{aligned} & +2 \\ & +68 \\ & +128 \\ & +151 \\ & +92 \end{aligned}$	0 0 0 0 0 0	$\begin{aligned} & +2 \\ & +68 \\ & +128 \\ & +151 \\ & +92 \end{aligned}$
$\begin{gathered} \frac{M}{G} \\ \frac{G}{1} \\ \frac{I}{3} \end{gathered}$	$\begin{aligned} & 796 \\ & 796 \\ & 796 \\ & 800 \end{aligned}$	10 +10 0 0 0 0	$\begin{array}{r} 0 \\ 0 \\ 0 \\ -16 \end{array}$	$\begin{array}{r} +10 \\ 0 \\ 0 \\ 0 \\ -16 \end{array}$	$\begin{aligned} & 1320 \\ & 1891 \\ & 1320 \\ & 1320 \\ & 1820 \end{aligned}$	+80 +30 +12 +16 +20 0	0 0 -16 -20 -16	$\begin{array}{r} +80 \\ +12 \\ 0 \\ 0 \\ -18 \end{array}$	$\begin{aligned} & 2158 \\ & 2130 \\ & 2140 \\ & 2200 \\ & 2260 \end{aligned}$	$\begin{array}{r} +79 \\ +37 \\ +32 \\ +\quad 20 \\ 0 \end{array}$	r -10 $=12$ $=120$ $=$ -16	$\begin{aligned} & +69 \\ & +25 \\ & +16 \\ & -16 \end{aligned}$	$\begin{aligned} & 1740 \\ & 1750 \\ & 1830 \\ & 1835 \\ & 1930 \end{aligned}$	$\begin{array}{r} +49 \\ +32 \\ +32 \\ +\quad 20 \end{array}$	$=12$ $=12$ $=20$ -16	$\begin{aligned} & +45 \\ & +20 \\ & +16 \\ & 0 \\ & -16 \end{aligned}$
$\begin{aligned} & \frac{K}{L} \\ & \frac{M}{M} \\ & \mathbf{N} \end{aligned}$	$\begin{array}{r} 800 \\ 900 \\ 960 \\ 900 \\ 1100 \end{array}$	0 0 0 0 0	-20 -24 -52 -52 -62	-20 -24 -52 -52 -62	1330 1360 1410 1540 1620	0 0 0 0 0	-20 -28 -78 -80 -89	-20 -28 $=78$ $=80$ -89	$\begin{aligned} & 7200 \\ & 2200 \\ & 2150 \\ & 2000 \\ & 2100 \end{aligned}$	0 0 0 0 0	-24 $=14$ $=123$ $=100$ -107	-24 $=54$ -123 -100 -107	$\begin{aligned} & 1912 \\ & 1900 \\ & 1870 \\ & 1460 \\ & 1210 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	-20 $=88$ -107 $=76$ -64	-20 $=18$ -107 $=76$ -64
$\begin{aligned} & 18 \\ & 17 \\ & 16 \\ & 15 \\ & 14 \end{aligned}$				-13 -13 -13 -13 -14			$\begin{aligned} & =18 \\ & =18 \\ & =18 \\ & =19 \\ & -19 \end{aligned}$				$\begin{aligned} & =24 \\ & =22 \\ & =21 \\ & =22 \end{aligned}$				$\begin{aligned} & =12 \\ & =12 \\ & =11 \\ & =18 \end{aligned}$
$\begin{aligned} & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \end{aligned}$				-25 -14 -13 -15 -8				$\begin{aligned} & =31 \\ & =31 \\ & =24 \\ & =16 \\ & =10 \end{aligned}$				$\begin{aligned} & -38 \\ & =21 \\ & =14 \\ & =11 \end{aligned}$				$\begin{aligned} & =85 \\ & =13 \\ & =8 \\ & +8 \end{aligned}$
$\begin{aligned} & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 5 \end{aligned}$				$\begin{aligned} & -5 \\ & +4 \\ & +10 \\ & +10 \\ & +7 \end{aligned}$				$\begin{aligned} & -5 \\ & +8 \\ & +\quad 8 \\ & +\quad 7 \end{aligned}$				$\begin{aligned} & +8 \\ & +\quad 8 \\ & +10 \\ & +10 \\ & +8 \end{aligned}$				$\begin{aligned} & +8 \\ & +8 \\ & +10 \\ & +\quad 8 \end{aligned}$
$\begin{aligned} & 3 \\ & 2 \\ & 1 \end{aligned}$				$\begin{aligned} & +8 \\ & +4 \\ & +1 \end{aligned}$				$\begin{aligned} & +1 \\ & +3 \\ & +1 \end{aligned}$				$\begin{array}{r} +6 \\ +\quad 2 \\ +\quad 1 \end{array}$				$\begin{aligned} & +6 \\ & +8 \\ & +\quad 1 \end{aligned}$
Total.				-80				- 57				+ 83				+138

Mean elevations and corrections for topography and isostatic compensation, separate zones, for Uniled Slates stations-Contd.

Tane	Elevar tion in leot	Topography	Com-pensation	Topog raphy and com-pensstion	Elevation in feat	Topography	Com. pensin tion	Topography and compensar tion	Elevation in foet	Topograpliy	rom-pensathon	Topog. raphy and cumpectisah tion	Elevar thon in feet	Topography	Com-jernation	Topography and com-pensstion
	E1 Paso, Tex., No. 63				Nogales, Ariz., No. 64				Yuma, Aris., No. 65				Compton, Cal., No. 66			
$\begin{aligned} & \mathrm{A} \\ & \mathrm{H} \\ & \mathrm{C} \\ & \mathrm{D} \\ & \mathrm{E} \end{aligned}$	3760 3760 3770 3770 3800	$+\quad 2$ +68 +156 +288 +292	$\begin{array}{r}0 \\ 0 \\ 0 \\ -\quad 6 \\ \hline\end{array}$	$+\quad 2$ +68 +156 +282 +284	3874 3887 3874 3874 3800	$+\quad 2$ +88 +156 +270 +296	0 0 0 -68	$+\quad 2$ +68 +156 +264 +288	176 176 176 168 162	+2 +38 +12 +6 0	0 0 0 0 0	$\begin{aligned} & +2 \\ & +36 \\ & +12 \\ & +6 \end{aligned}$	$\begin{gathered} 69 \\ 70 \\ 69 \\ 69 \\ 69 \end{gathered}$	$\begin{array}{r} +2 \\ +16 \\ +4 \\ 0 \\ 0 \end{array}$	0 0 0 0 0	$\begin{array}{r} +2 \\ +16 \\ +1 \\ 0 \\ 0 \end{array}$
$\begin{gathered} \mathrm{F} \\ \mathbf{G} \\ \frac{\mathrm{H}}{\mathrm{I}} \end{gathered}$	3865 3800 3910 3808 4070	+187 +98 +61 +60 +32	-10 -12 -16 -48	+177 +86 +45 +20 -16	3080 3900 3900 3900 3820	+193 +105 +64 +60 +32	-10 $=12$ $=16$ $=40$	+183 +83 +48 +20 +16	155 140 151 159 207	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 74 \\ & 86 \\ & 91 \\ & 81 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$\begin{gathered} \mathrm{K} \\ \frac{\mathrm{~L}}{} \\ \frac{\mathrm{M}}{\mathrm{~N}} \\ \mathbf{O} \end{gathered}$	4030 39010 4200 divi 4570	+32 +20 +21 $+\quad 6$ +0	-60 -96 -242 -216 -221	-40 $=72$ $=226$ $=210$ -221	3900 3000 2990 2895 2020	+20 $+\quad 14$ $+\quad 9$ 0 0	-60 $=86$ $=171$ -150 -148	- 40 $=72$ -162 -150 -148	298 415 430 470 932	0 0 0 0 0 0	-6 -12 -28 -25 -48	-6 -12 -28 -25 -48	134 2000 390 10110 1130	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 -5 -25 -50 -60	0 -5 -25 -50 -60
18				- 18												
17				- 45				- 24				-17				
16				- 14				- 24				-18				
15				-48				- 28				-18				$+6$
14				- 49			.	- 28				-20				$+7$
13				- 75				- 49				-15				+18
12				-32				- 27				-9				+14
11				- 23				- 12				+3				+9
8				-				+ 6				+3 +10				+13 +11
8				+14				+ 15				+16				+16
7				+5 +10				+ + +8				+10 +8				+11 +9
5				+10				+ 8				+ 8				+89
4				+ 8				+ 8				+8				+8
				+ 6				+ 5				+ 8				
2				+ 8				+ 4				$+4$				$+1$
1								+ 1				$+1$				$+1$
Total...				+ 7				+377				-99				$+5$
	Goldfield, Nev., No. 67				Yavapal, Ariz., No. 68				Grand Canyon, Ariz., No. 69				Gallup, N. Mex., No. 70			
	5629	+ ${ }^{2}$,	+ 2	7150	+ 2	0	+ 2	2784	+ ${ }^{2}$			6496		0	
${ }_{\text {E }}$	5700 5690	+68 +164	-0	+68 +160	7150 6800	+68 +126	$\begin{array}{r}0 \\ -\quad 4 \\ \hline\end{array}$	+68 +122	2784 2875	+68 +118	0	+68 +148	6196	+68 +168	- 0	+68 +160
D	5688	+301	-6	+295 +29	0 010	+267	- 6	+261	3100	+190	- 5	+188 +185	6496	+318	- 6	+312
E	5700	+408	-12	+394	5850	+391	- 12	+379	3510	+182	- 8	+174	8600	+440	- 16	+424
	5840	+328	-20								- 10	+82				
Q	5970	+195	-24	+171	5560	+247	- 20	+227	4410	+37	-16	+ 21	6720	+242	-24	+218
H	5970	+147		+115	5320	+177	- 25	+152	4820	+ 11	- 23	- 12	6720	+175	-32	+143
$\frac{1}{5}$	5975	+113	- 52	+61	5110	+158	- 49	+109	5170	+ 7	- 48	- 41	6760	+148	- 60	+88
	5990			-11	5510	+ 85	- 60	+ 25	5500	+15	-61	- 96	6850		- 78	
IT	5610	+ 51	-91	- 40	6240	+ 79	-105	-26	0090		-106	-112	6960	+ 75	-120	- 45
L	5400	+ 29	-125	-96	8160	+ 49	-156	-107	6290	- 5	-149	-154	7050	+ 88	-189	-121
M	5008	+ 0	-313	-313	5930	+ 51	-345	-294	6150	+ 2	-359	-357	7190	+34	-417	-383
N	5480	+16	-293	-277	59.50	+17	-306	-289	5950	$+\quad 7$ $+\quad$	-308	-299	6820	+16	-359	-343
0	6210	+1	-302	-301	5200	+ 9		-256				-256				-312
18				-61				- 56				- 56				-63
17				- 51				- 63				- ${ }^{\text {c }}$				- 83
18				- 51				- 48				- 48				- 65
14				- 40				- 50				- 80				-69
13				- 61				- 81				- 81				
12				- 20				- 56				- 56				- 47
11.				- 1				-25				- 25				-32
10				+ 5				- 4				- 1				- 8
9				+ 8				+ 6				+ 6				+ 4
8				+ 12				+ 12								
7				+ 8				+ 8				+ 8				+ 7
8				+ 9				+ 9				+ 8				+ 8
5				+ 9				+ 8				+ 8				+8
4				+ 8				+ 8				+ 8				$+8$
3				+ 5				+ 5				+ 5				
2				+ 4				+ 3				+ 3				+
				+				$+$				+				+1
Total.				+272				+337				-957				+141

Mean elevations and corrections for topography and isostatic compensation, separate zones, for United States stations-Contd.

Zone	Elevar tion in feet	Topography	Compenss tion	Topog raphy and compensar tion	Elevation in feet	Topography	$\begin{aligned} & \text { Com- } \\ & \text { pensar } \\ & \text { tion } \end{aligned}$	Topog raphy and compense tion	Elevation in feet	Topography	Com-pensation	Topography and com-pensa-	Elevation in feet	Topography	Com. pensation	Topography and pensation
	Las Vegas, 3 Mex., No. 71				Shamrock, Tex., No. 72				Denison, Tex., No. 73				Minneapolls, Minn., No. 74			
$\begin{aligned} & A \\ & \mathbf{B} \\ & \mathbf{C} \\ & \mathrm{D} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & 6429 \\ & 6429 \\ & 6429 \\ & 6499 \\ & 6400 \end{aligned}$	$+\quad 2$ +68 +164 +318 +440	$\begin{array}{r}11 \\ 0 \\ = \\ \hline \\ \hline\end{array}$	$\begin{aligned} & +\quad 2 \\ & +68 \\ & +160 \\ & +312 \\ & +424 \end{aligned}$	$\begin{aligned} & 2300 \\ & 2300 \\ & 2300 \\ & 2300 \\ & 2300 \end{aligned}$	$\begin{aligned} & +2 \\ & +68 \\ & +140 \\ & +198 \\ & +168 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ 0 \\ -\quad 8 \end{array}$	$\begin{aligned} & +\quad 2 \\ & +68 \\ & +140 \\ & +198 \\ & +160 \end{aligned}$	$\begin{aligned} & 754 \\ & 754 \\ & 740 \\ & 740 \\ & 70 \end{aligned}$	$\begin{aligned} & +2 \\ & +60 \\ & +84 \\ & +54 \\ & +24 \end{aligned}$	0 0 0 0 0	$\begin{aligned} & +2 \\ & +60 \\ & +84 \\ & +544 \\ & +24 \end{aligned}$	$\begin{aligned} & 840 \\ & 810 \\ & 840 \\ & 830 \\ & 820 \end{aligned}$	$\begin{aligned} & +2 \\ & +60 \\ & +82 \\ & +64 \\ & +24 \end{aligned}$	0 0 0 0 0	$\begin{aligned} & +2 \\ & +60 \\ & +82 \\ & +64 \\ & +24 \end{aligned}$
$\begin{gathered} \mathbf{F} \\ \mathbf{G} \\ \mathbf{H} \\ \frac{I}{J} \end{gathered}$	$\begin{aligned} & 6460 \\ & 630 \\ & 6560 \\ & 650 \\ & \hline 8800 \end{aligned}$	+381 +241 +169 +148 +85	- 20 $=24$ $=82$ $=60$ -79	+361 +217 +137 +88 +6	$\begin{aligned} & 2300 \\ & 2300 \\ & 7301 \\ & 2350 \\ & 2390 \end{aligned}$	+168 +948 +32 +20 +	- 10 $=12$ $=16$ $=20$	$\begin{array}{r} +80 \\ +36 \\ +16 \\ 0 \\ -16 \end{array}$	690 660 690 650 690	+10 0 0 0 0	0 0 0 0 -16	$\begin{array}{r} +10 \\ 0 \\ 0 \\ 0 \\ -16 \end{array}$	$\begin{aligned} & 840 \\ & 880 \\ & 890 \\ & 880 \\ & 880 \end{aligned}$	$\begin{array}{r} +10 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	0 0 0 0 -16	+10 +10 0 0 -16
$\begin{aligned} & \frac{K}{L} \\ & \mathrm{M} \\ & \mathrm{~N} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & 6850 \\ & 7100 \\ & 7100 \\ & 6650 \\ & 51110 \end{aligned}$	+88 +78 +35 +31 +12	-120 -171 -412 -350 -309	-42 $=128$ -377 -329 -297	2425 2420 2300 2260 2410	13 $+\quad 13$ $+\quad 4$ 0 0 0	$=40$ $=56$ $=128$ -115 -122	-27 $=52$ -128 -115 -122	$\begin{aligned} & 670 \\ & 700 \\ & 600 \\ & 710 \\ & 760 \end{aligned}$	0 0 0 0 0	-20 -24 -37 -42 -45	-20 -24 -37 -42 -45	$\begin{array}{r} 900 \\ 920 \\ 990 \\ 1000 \\ 1040 \end{array}$	0 0 0 0 0	-20 -24 -56 -48 -56	-20 -24 -56 -48 -56
$\begin{aligned} & 18 \\ & 17 \\ & 16 \\ & 15 \\ & 14 \end{aligned}$				- 62 $=62$ $=62$ $=59$				$\begin{aligned} & =24 \\ & =24 \\ & =24 \\ & =24 \end{aligned}$				-9 $=9$ $=9$ $=9$ -9				-12 -12 -12 -13 -13
$\begin{aligned} & 13 \\ & 12 \\ & 11 \\ & 11 \\ & 9 \end{aligned}$				- 89 $=83$ $=28$ $=18$				$=44$ $=12$ $=17$ $=14$				-20 $=18$ -11 -12 -8				-81 -16 -18 $=8$ -8
$\begin{aligned} & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \end{aligned}$				+9 $+\quad 7$ +10 +8				+ +8 +10 +10 $+\quad 8$				+8 +8 +9 +11 +8				0 +6 +8 +10 +8
$\begin{aligned} & 8 \\ & 2 \\ & 1 \end{aligned}$				$\begin{aligned} & +5 \\ & +8 \\ & +\quad 1 \end{aligned}$				$\begin{aligned} & +6 \\ & +8 \\ & +\quad 1 \end{aligned}$				$\begin{aligned} & +5 \\ & +8 \\ & +1 \end{aligned}$				+1 +1 +1
Total.				+171				+ 70				-6				-52
	Lead, 8. Dak., No. 76				Blsmarck, N. Das., No. 78				Hinsdale, Mont., No. 77				Sand Point, Idaho, No. 78			
$\begin{aligned} & \mathrm{A} \\ & \mathrm{H} \\ & \mathrm{C} \\ & \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 52216 \\ & 5200 \\ & 52200 \\ & 5200 \\ & 5290 \end{aligned}$	$\begin{aligned} & +2 \\ & +64 \\ & +164 \\ & +300 \\ & +386 \end{aligned}$	$\begin{array}{r}0 \\ -\quad 4 \\ -\quad 8 \\ \hline\end{array}$	$+\quad 2$ +64 +160 +294 +378	$\begin{aligned} & 1690 \\ & 1690 \\ & 1690 \\ & 1700 \\ & 1700 \end{aligned}$	$\begin{aligned} & +2 \\ & +68 \\ & +128 \\ & +156 \\ & +98 \end{aligned}$	0 0 0 0 0	$\begin{aligned} & +2 \\ & +68 \\ & +128 \\ & +156 \\ & +98 \end{aligned}$	$\begin{aligned} & 2170 \\ & 2170 \\ & 2160 \\ & 2160 \\ & 2170 \end{aligned}$	$\begin{aligned} & +2 \\ & +68 \\ & +140 \\ & +190 \\ & +155 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ 0 \\ -\quad 8 \end{array}$	$\begin{aligned} & +2 \\ & +68 \\ & +140 \\ & +190 \\ & +147 \end{aligned}$	$\begin{aligned} & 300 \\ & 2090 \\ & 2100 \\ & 2100 \\ & 2150 \end{aligned}$	$\begin{aligned} & +\quad 2 \\ & +68 \\ & +136 \\ & +186 \\ & +148 \end{aligned}$	$\begin{array}{r}0 \\ 0 \\ 0 \\ 0 \\ -8 \\ \hline\end{array}$	$\begin{aligned} & +2 \\ & +\quad 68 \\ & +136 \\ & +186 \\ & +140 \end{aligned}$
$\begin{gathered} \mathrm{F} \\ \mathrm{G} \\ \mathrm{II} \\ \mathrm{I} \\ \mathrm{~J} \end{gathered}$	$\begin{aligned} & 5300 \\ & 5020 \\ & 5550 \\ & 5000 \\ & 5200 \end{aligned}$	$\begin{aligned} & +296 \\ & +182 \\ & +131 \\ & +83 \\ & +45 \end{aligned}$	$\begin{array}{r} \\ -20 \\ = \\ = \\ = \\ = \\ -40 \\ \hline\end{array}$	$\begin{array}{r} +276 \\ +158 \\ +99 \\ +\quad 3 \\ +\quad 3 \end{array}$	1720 1730 1770 1730 1780	+88 +42 +22 +20 +20	- 5 $=6$ $=16$ $=20$	$\begin{aligned} & +44 \\ & +18 \\ & +6 \\ & -16 \end{aligned}$	$\begin{aligned} & 2210 \\ & 2270 \\ & 2330 \\ & 2350 \\ & 2360 \end{aligned}$	$\begin{array}{r} +80 \\ +38 \\ +17 \\ +\quad 20 \end{array}$	- 10 $=12$ $=16$ $=20$	$\begin{aligned} & +70 \\ & +\quad 26 \\ & +\quad 1 \\ & -16 \end{aligned}$	$\begin{aligned} & 3001 \\ & 2190 \\ & 2230 \\ & 2510 \\ & 2730 \end{aligned}$	$\begin{aligned} & +73 \\ & +36 \\ & +26 \\ & +15 \\ & +16 \end{aligned}$	$\begin{array}{r}\text { - } 10 \\ =12 \\ =16 \\ =20 \\ -82 \\ \hline\end{array}$	$\begin{aligned} & +63 \\ & +24 \\ & +10 \\ & -16 \\ & -16 \end{aligned}$
$\begin{aligned} & \mathrm{K} \\ & \mathrm{~L} \\ & \mathrm{M} \\ & \mathrm{~N} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & 5040 \\ & 4840 \\ & 4400 \\ & 3890 \\ & 3610 \end{aligned}$	+45 +33 +27 0	-80 -120 -260 $=199$ -174	-35 $=88$ $=233$ -199 -174	$\begin{aligned} & 1820 \\ & 1820 \\ & 2000 \\ & 2010 \\ & 2020 \end{aligned}$	0 0 11 0 0	-20 $=18$ -112 -90 -105	-20 $=48$ $=112$ $=96$ -105	$\begin{aligned} & \text { ren } \\ & 2390 \\ & 2650 \\ & 2790 \\ & 2890 \end{aligned}$	0 0 0 0 0	-25 $=54$ -149 -145 -135	-25 $=54$ $=149$ -145 -135	$\begin{aligned} & 2900 \\ & 3100 \\ & 3890 \\ & 3970 \\ & 4110 \end{aligned}$	0 $+\quad 11$ +11 0 0	-43 $=72$ -238 $=204$ -205	$\begin{aligned} & -43 \\ & =71 \\ & =227 \\ & =204 \\ & -205 \end{aligned}$
$\begin{aligned} & 18 \\ & 17 \\ & 16 \\ & 15 \\ & 14 \end{aligned}$				$\begin{aligned} & =36 \\ & =37 \\ & =37 \\ & =39 \\ & =40 \end{aligned}$			$\begin{aligned} & =20 \\ & =20 \\ & =19 \\ & =20 \end{aligned}$				$\begin{aligned} & =31 \\ & =31 \\ & =31 \\ & =32 \end{aligned}$			$\begin{array}{r}-42 \\ = \\ =40 \\ = \\ \hline\end{array}$
$\begin{aligned} & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \end{aligned}$				$\begin{aligned} & =81 \\ & =35 \\ & =80 \\ & =19 \end{aligned}$				$\begin{aligned} & =38 \\ & =86 \\ & =88 \\ & =17 \\ & =10 \end{aligned}$,		$\begin{aligned} & =66 \\ & =40 \\ & =30 \\ & =21 \\ & =.13 \end{aligned}$				$\begin{array}{r}\text { - } 70 \\ -\quad 39 \\ =\quad 21 \\ -\quad 11 \\ \hline 0\end{array}$
$\begin{aligned} & 7 \\ & 7 \\ & 5 \\ & 5 \\ & 4 \end{aligned}$				$\begin{aligned} & +1 \\ & \pm 8 \\ & +8 \\ & +\quad 7 \end{aligned}$				$\begin{aligned} & \mathbf{Y} \\ & +5 \\ & +10 \\ & +7 \end{aligned}$				$\begin{aligned} & \pm 2 \\ & +5 \\ & +10 \\ & +\quad 8 \end{aligned}$				$\begin{aligned} & +7 \\ & +8 \\ & +8 \\ & +8 \end{aligned}$
$\begin{aligned} & 3 \\ & 2 \\ & 2 \end{aligned}$				$\begin{aligned} & +1 \\ & +3 \\ & +1 \end{aligned}$				$\begin{aligned} & +4 \\ & +\quad 3 \\ & +1 \end{aligned}$				$\begin{aligned} & +3 \\ & +1 \end{aligned}$				$\begin{aligned} & +8 \\ & \pm 3 \\ & +1 \end{aligned}$
Total.				+443				- 54				-167				-444

Mean elevations and corrections for topography and Lsostatic compensation, separate zones, for United States stations-Contd.

2000	$\begin{aligned} & \text { Elevs } \\ & \text { tion in } \\ & \text { feet } \end{aligned}$	Topog. raphy	Com. penser tion	Topography and pensstion	Elevar tion in feot	Topography	$\begin{aligned} & \text { Com- } \\ & \text { penser } \\ & \text { tion } \end{aligned}$	$\begin{aligned} & \text { Topog- } \\ & \text { raphy } \\ & \text { and } \\ & \text { com- } \\ & \text { pense- } \\ & \text { tfon } \end{aligned}$	Elevation in feet	Topog. raphy	Coms pensation	Topography and compensar tion	Eleva tion in feet	Topograplay	Compensa t10n	Topors rapliy and rom. pensation
	Bolse, Idaho, No. 79				Astorfa, Oreg., No. 80				Siseon, Cal., No. 81				Rock Springs, Wyo., No. 82			
$\begin{aligned} & A \\ & \frac{1}{C} \\ & C \\ & D \end{aligned}$	$\begin{aligned} & 2890 \\ & 2890 \\ & 2890 \\ & 2700 \\ & 2720 \end{aligned}$	+68 +68 +148 +222 +201	0 0 0 0 $-\quad 8$	$\begin{aligned} & +8 \\ & +68 \\ & +148 \\ & +222 \\ & +168 \end{aligned}$	5 5 15 10 120	+1 0 0 -5 -1	0 0 0 0 0	$\begin{array}{r} +1 \\ 0 \\ 0 \\ -5 \\ -1 \end{array}$	$\begin{aligned} & 3440 \\ & 3440 \\ & 3420 \\ & 3400 \\ & 3390 \end{aligned}$	$\begin{aligned} & +2 \\ & +68 \\ & +151 \\ & +259 \\ & +264 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ 0 \\ -\quad 8 \\ -\quad 8 \end{array}$	$\begin{aligned} & +2 \\ & +68 \\ & +151 \\ & +253 \\ & +256 \end{aligned}$	$\begin{aligned} & 6260 \\ & 6020 \\ & \hline 0200 \\ & 6270 \\ & 6200 \end{aligned}$	$\begin{aligned} & +2 \\ & +68 \\ & +164 \\ & +315 \\ & +433 \end{aligned}$	0 $-\quad 0$ $=\quad 1$ -16	$\begin{aligned} & +2 \\ & +68 \\ & +160 \\ & +309 \\ & +417 \end{aligned}$
$\begin{gathered} \frac{W}{a} \\ \frac{1}{B} \\ \frac{1}{3} \end{gathered}$	2760 2830 2893 3123 3440	+111 +60 +18 +18	- 10 $=12$ $=16$ $=32$	$\begin{aligned} & +101 \\ & +48 \\ & +25 \\ & -\quad 24 \end{aligned}$	80 20 20 70 70	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	3840 3790 3890 4500 5450	+169 +84 +88 +35 +16	- 10 $=12$ $=16$ $=48$	$\begin{array}{r} +159 \\ +72 \\ +32 \\ -\quad 5 \\ -32 \end{array}$	min 6420 6510 67910 6540	$\begin{aligned} & +370 \\ & +234 \\ & +161 \\ & +146 \\ & +89 \end{aligned}$	-20 $=24$ $=32$ $=80$ 80	$\begin{aligned} & +350 \\ & +210 \\ & +129 \\ & +88 \\ & +\quad 8 \end{aligned}$
$\begin{aligned} & \frac{K}{L} \\ & \frac{M}{M} \\ & \mathbf{N} \\ & \hline \end{aligned}$	3560 3560 807 4410 700	+18 $+\quad 5$ +8 $+\quad 7$	- 60 -81 -231 -234 -241	-85 -85 -223 -227 -233	90 190 410 -40 -552	0 0 0 0 0	0 -4 -23 +4 +29	0 -4 -23 +4 +29	B90 4860 4250 4010 3510	+8 $+\quad 8$ $+\quad 11$ 0 0	-80 -111 -252 -205 -174	-78 -103 -241 -205 -174	6610 6880 7020 7180 7730	+80 +83 +56 $+\quad 15$ $+\quad 6$	-120 -163 $=408$ -378 -377	$\begin{aligned} & -40 \\ & =120 \\ & -350 \\ & -363 \\ & -371 \end{aligned}$
$\begin{aligned} & 18 \\ & 17 \\ & 16 \\ & 15 \\ & 14 \end{aligned}$				$\begin{aligned} & =53 \\ & =56 \\ & =56 \\ & =54 \\ & -52 \end{aligned}$				+8 +8 +5 +3				- 29 $=25$ $=21$ $=17$			$\begin{aligned} & =78 \\ & =71 \\ & =71 \\ & =73 \\ & -67 \end{aligned}$
$\begin{array}{r} 18 \\ 12 \\ 11 \\ 10 \\ 0 \end{array}$				-80 $-\quad 57$ $=\quad 8$ $+\quad 2$				0 -1 +8 +6				-2 $+\quad 8$ +12 $+\quad 9$ +8				$\begin{aligned} & -99 \\ & =55 \\ & =38 \\ & =16 \\ & +\quad 8 \end{aligned}$
$\begin{aligned} & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \end{aligned}$				+9 $+\quad 7$ +88 $+\quad 8$				+11 +7 +7 +8				+18 +88 +88 +8				$\begin{array}{r} +10 \\ +7 \\ +8 \\ +8 \end{array}$
$\begin{aligned} & \frac{\pi}{2} \\ & 2 \end{aligned}$				$\begin{aligned} & +1 \\ & +3 \\ & +1 \end{aligned}$				$\begin{aligned} & +3 \\ & +3 \\ & +1 \end{aligned}$				+4 +4				$\begin{array}{r}+8 \\ +8 \\ +\quad 1 \\ \hline\end{array}$
Tutal.				-423				+76				+147				- 13
	Paxton, Nebr., No. 89				Washington, D. C. (Bureau of Standards), No. 84				North Hero, Vt., No. 85				Lake Plactd, N. Y., No. 88			
$\begin{aligned} & \mathbf{A} \\ & \mathbf{B} \\ & \mathbf{C} \\ & \mathbf{D} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & 3000 \\ & 3060 \\ & 3060 \\ & 3070 \\ & 3080 \end{aligned}$	$+\quad 8$ +68 +152 +243 +236	0 0 0 $-\quad 3$ -8	+ + +68 +152 +240 +228		+2 +48 +32 +16 +8	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & +8 \\ & +48 \\ & +32 \\ & +16 \\ & +\quad 8 \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \\ & 115 \\ & 120 \\ & 110 \end{aligned}$	$\begin{aligned} & +2 \\ & +24 \\ & +4 \\ & +6 \end{aligned}$	0 0 0 0 0	+2 +24 +4 +6 0	1870 1870 1880 1890 1800	+8 +68 +138 +170 +119	1 0 0 0 -3	$\begin{aligned} & +2 \\ & +68 \\ & +136 \\ & +170 \\ & +116 \end{aligned}$
F	8110	+140	- 10	+130		0	0	0	110	0	0	0	1020		-7	
	3120	+ 72	- 12	+ 60		0	0	0	100	0	0	0	1930	± 87	-12	+ 25
H	3110	+	- 16	+ 32		0	0	0	100	0	0	0	2020	+ 22	-7	+15
$\frac{1}{3}$	3120	+	- 20	- 0		0	- 0	- 0	110	0	${ }_{0}^{0}$	0	2320 2406	+ 11	-20 -24	± 9
3	3170	+16	- 32	- 16		0	- 1	- 1	110	0	0	0				
	3210					0	-1		IS0		0	0	2280		-40	
\underline{L}	3270		-72	-72		0	-2	- 8	200	0	-8	-3	2050	+ 0	-50	- 50
	3250	$+13$	-186	-183		0	-15	-15	660	0	-32	-32	TW0]	0	-75	- 75
N	3270		-170	-170		0	-19	-10	680	0	-44	-44	880	0	- 52	- 51
0	3280	0	-155	-155				- 25	680		-48	-48				
18				- 33								-10				- 10
17			$\begin{array}{r}-34 \\ -33 \\ \hline\end{array}$				- 8	-10				- 9
15				- 33							-7				-8
14				- 33				- 1				-7				- 7
13				- 59				+ 8				-16				18
111				-85 -86				+18 +18				-6 +8				-
10				- 17				+17				$+11$				+11
9				- 4				+11				$+10$				+ 9
$\begin{aligned} & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \end{aligned}$				$\begin{aligned} & +3 \\ & +8 \\ & +8 \\ & +8 \\ & +\quad 8 \end{aligned}$				$\begin{aligned} & +18 \\ & +6 \\ & +6 \\ & +\quad 7 \\ & +\quad \end{aligned}$				+11 +8 +8 +8				$\begin{aligned} & +11 \\ & +8 \\ & +8 \\ & +8 \end{aligned}$
$\begin{aligned} & 3 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$				$\begin{aligned} & +5 \\ & +8 \\ & +1 \end{aligned}$				$\begin{aligned} & +6 \\ & +1 \\ & +1 \end{aligned}$				$\begin{aligned} & +6 \\ & +8 \\ & +1 \end{aligned}$				$\begin{array}{r} +6 \\ +\quad 5 \\ +\quad 1 \end{array}$
Total..				$+17$				+118				-88				+320

Mean elevations and corrections for topography and isostatic compensation, separate zones, for United States stations-Contd.

Zone	Elevation in feet	Topograply	Com. pensation	$\left.\begin{gathered} \text { Topog- } \\ \text { raphy } \\ \text { sind } \\ \text { com- } \\ \text { pense } \\ \text { tion } \end{gathered} \right\rvert\,$	Elevation in feet	Topog raphy	Com-pensation	Topography and com-pensation	Eleva- tion in	Topography	Com-pensation	Topography and com-pensation	Elevan tion in feet	Topography	Com. pensation	Topography and pensation
	Potsdam, N. Y., No. 87				Wilson, N. Y., No. 88				Alpena, Mich., No. 89				Virginias Beach, Va., No. 00			
$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 430 \\ & 67 \\ & 430 \\ & 440 \\ & 430 \end{aligned}$	+2 +56 +52 +22 +8	0 0 0 0 0	+2 +56 +52 +22 +8	280 280 280 280 280	+2 +48 +28 +12 +8	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & +2 \\ & +48 \\ & +28 \\ & +12 \\ & +8 \end{aligned}$	585 580 580 580 80	+2 +56 +68 +42 +16	0 0 0 0 0 0	+2 +56 +68 +42 +16	12 12 3 2 2 4	$\begin{array}{r} +\quad 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	0 0 0 0 0	$\begin{array}{r} +2 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$
$\begin{gathered} \mathrm{F} \\ \mathrm{Q} \\ \frac{H}{H} \\ \frac{\mathrm{I}}{\mathrm{~J}} \end{gathered}$	$\begin{aligned} & 500 \\ & 470 \\ & 475 \\ & 527 \\ & 600 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 -13	6 1 0 -13	$\begin{gathered} 270 \\ 300 \\ 270 \\ 290 \\ 290 \\ 270 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0	580 580 580 000 000	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	re $\begin{array}{r}0 \\ 0 \\ 0 \\ 0 \\ -16\end{array}$	0 0 0 0 -16	2 2 0 -3 -10	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0	0 0 0 0 0
K L M N N	577 678 746 810 880	0 0 0 0 0	-17 -18 -40 -47 -42	-17 -18 -40 -47 -42	300 350 380 580 850	0 0 0 0 0	0 -8 -20 -33 -46	11 -8 -20 -33 -46	590 590 640 160 680	0 0 0 0 0	-20 -24 -35 -36 -34	-20 -24 -35 -36 -34	-11 -20 -15 -24 -98	$\left.\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	0 0 0 0 +5	0 0 0 0 $+\quad 5$
18				-8				-8				- 7				
17				-8				-10				-7				$+11$
16				-9				-9				-7				+18
15				-8			-10				-7				+16
14			-9				-10				-8				+21
13				-16				-13				-15				+88
11				-1				- 1				-10				+ 80 +87
10				$+8$				+ 5				-1				+18
I				$+7$				+ 6				+1				+18
8				+11				+10				+ 6				
7				$+7$				$+7$				+ 6				+ 6
5				+8 +8				+8 +8				+7 +7				+ 6
4				+ 6				+ +8				± 8				+ 7
3				$+6$				+ 6								
2				+ 5				+ 6				+ 5				+3
1			$+1$				$+1$	-			+1				+ 1
Total..				-37				-18				-5				+249
	Durham, N. C., No. 91				Femandina, Fla., No. 92				Wilmer, Ala., No. 88				Aliceville, Ale., No. 94			
${ }_{\text {A }}^{\text {A }}$	413	+2 +56	0	+ $+\quad 2$ +58	10 10	+2	0		${ }_{228}^{228}$	+2	0	+ 2	29	$+2$	0	$+2$
C	413	+43	0	$+\quad 18$ +18	10	0	0	0	220	+ +20	0	+	\%4	+44 +24	0	+44 +24
D	413	+18	0	+ 18	7	0	0	0	228	$+12$	0	+ 12	351	+12	0	+12
E	413	$+8$	0	+ 8	2	0	0	0	226	+8	0	+88	247	$+8$	0	$+8$
F	413	0	0						228				245		0	
\square	116	0	0		5	0	0	10	213	0	0	a	295	0	0	0
	41.5	0	-	0	-8	0	0	0	213	0	0	0	248	0	0	0
1	428	0	I		-2	0	0	0	217	0	0	0	248	0	0	0
J	420	0	1		0	0	1	0	219	0	0	0	247	0	0	0
	E6	0	- 5	-5	-3	0	0	0	217	0	0	,	249	0	0	0
L	412	0	-5	- 5	-15	0	0	0	172	0	0		251	0	0	0
$\frac{\mathrm{M}}{\mathrm{N}}$	44	0	-28 -24	-28 -28	-10	0	0	0	131	0	- 7	- 7	255	0	-14	-14
N	401	0	-24 -20	-24 $=20$	-2 -38	0	0	0	91 71	0	-5	- 5	269 328	0	-17 -18	-17 -18
18				- 5		$+\quad 2$ +8					...			- 4
16			- 7			+ 4				+ 2				-4
15				- 1				+ 5				+ 6				-4
14				- 1				$+7$				+ 7				-
13				+ 8				+ 18				$+16$				-1
19				+15				+ 28				+14				$+8$
11				+18				+ 24				+ 7				+8
10				+ 19				+ 20				+ 6				$+6$
9				+ 18				+ 13			+ 8	$+3$
8				+ 11												
8				+ 5				+ 6				+ 7				$+7$
6			+ 6			+ 7				+ 9				$+8$
5				+ 8				+ 9				$+10$				$+11$
4	$+7$			+ 7				+ 8				$+7$
				+ 6				+ 6				+ 6				$+5$
2				+ 3				+81				+ 3				$+5$
1			$+1$								$+1$				
Total..				+144				+170				+181				+80

Mean elevations and corrections for topography and fsostatic compensation, separate zones, for Untled Slates stations-Contd.

Zone	Elevation in feet	Topography	Com-pensatlon	$\left\|\begin{array}{c} \text { Topog. } \\ \text { raphy } \\ \text { and } \\ \text { rom- } \\ \text { perssa- } \\ \text { tion } \end{array}\right\|$	Eleva tion in feet	Topography	$\begin{aligned} & \text { Com- } \\ & \text { pensa } \\ & \text { tion } \end{aligned}$	$\begin{gathered} \text { Topog- } \\ \text { raphy } \\ \text { and } \\ \text { com- } \\ \text { pensa- } \\ \text { tion } \end{gathered}$	Elevetion in feot	Topog taplyy	Com. pensa lion	Topog raphy and com-pensstion	Elevs tion in feet	Topography	Com- pense tion	Topography and compensor tion
	New Madrid, Mo., No. 95				Mens, Ark., No. 98				Nacogdoches, Tex., No. 97				Alpine, Tex., No. 88			
$\begin{aligned} & \mathbf{A} \\ & \mathbf{B} \\ & \mathbf{C} \\ & \mathbf{D} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & 258 \\ & 258 \\ & 258 \\ & 258 \\ & 258 \end{aligned}$	+2 +44 +24 +12 +8	0 0 0 0 0	+2 +44 +24 +12 +8	1209 1200 120 1201 1119	$+\quad 2$ +64 +112 +108 +56	0 0 0 0 0	$+\quad 2$ +64 +112 +108 +56	$\begin{aligned} & 298 \\ & 300 \\ & 300 \\ & 300 \\ & 800 \end{aligned}$	+2 +48 +32 +12 +8	0 0 0 0 0	+2 +48 +32 +12 +8	1871 4460 44640 4470 4500	$+\quad 2$ $+\quad 88$ +164 +288 +344	0 0 $-\quad 4$ $-\quad 8$	$\begin{aligned} & +2 \\ & +68 \\ & +160 \\ & +282 \\ & +336 \end{aligned}$
$\begin{gathered} F \\ G \\ H \\ H \\ J \end{gathered}$	$\begin{aligned} & 200 \\ & 280 \\ & 259 \\ & 288 \\ & 288 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1120 1175 1247 1225 1222	+22 $+\quad 3$ $+\quad 4$ $+\quad 5$ 0	0 0 -4 -5 -16	+22 $+\quad 3$ $+\quad 0$ 0 -16	500 300 300 760 291	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0	0 0 0 0 0	4550 4520 4540 4730 4960	+240 +129 +80 +67 +34	$=10$ $=12$ $=18$ $=40$	$\begin{aligned} & +230 \\ & +117 \\ & +64 \\ & +27 \\ & +14 \end{aligned}$
$\begin{aligned} & \mathrm{K} \\ & \mathrm{~L} \\ & \mathrm{M} \\ & \mathrm{~N} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & 290 \\ & 290 \\ & 305 \\ & 388 \\ & 506 \end{aligned}$	0 0 0 0 0	0 0 -14 -27 -30	0 0 -14 -27 -30	119 1169 902 688 700	0 0 0 0 0	-20 -27 -51 -37 -37	- 20 $=27$ $=51$ $=37$ -37	281 287 288 306 259	0 0 0 11 0	0 0 -14 -19 -13	0 -14 -19 -13	4910 4800 4060 4100 3200	$\begin{array}{r}+37 \\ +23 \\ +22 \\ +\quad 4 \\ \hline 0\end{array}$	-80 $=115$ -275 -214 -163	$\begin{aligned} & =43 \\ & =92 \\ & =253 \\ & =210 \\ & -153 \end{aligned}$
18				- 6				- 7				- 3				
17				-6				- 7				-3				
16				-6								-3				-
15				-6				- 7				-2				-32
14				-7				- 7	,		-1		,		-32
13				-12				- 13				- 3				
12				-8				- 10				-2				- 24
11				- 5				-8				-4				- 19
10 9				0				- 7				- 7				18 $+\quad 3$
8				+ 8								+ δ				+18
5				+7 +8				+8 $+\quad 8$				+88				+ 6
5			.	+8 +10			+8 +11				+10 +10				+10 +10
4				+ 7				+ 8				+8			+ 8
$\begin{aligned} & 3 \\ & 2 \end{aligned}$				+6 +8				+8 $+\quad 5$ $+\quad 1$				+8 +6 +8				+6 +3
1				+1								+1				
Total..				$+7$				+148				$+77$				+326
	Farwell, Tex., No. 99				Guymon, Okla., No. 100				Helenwood, Tenn., No. 101				Cloudland, Tenn., No. 102			
A	4130	a $+\quad 2$ +88	0	+ ${ }^{2}$	3000	+ 2	0	+ ${ }^{2}$	1388	+ ${ }^{2}$	0	+ ${ }^{2}$	6200	+ + +68	0	+ 2
c	4130	+158	-2	+156	3100	+152	0	+	1400	+120	0	+120	6100	+164	- 4	+160
D	4130	+282	- 6	$+276$	3100	$+243$	-3	+240	1400	+132	0	+132	5800	+296	- 6	+ 290
E	4125	+314	- 8	+306	3050	+236	-8	+228	1419	+ 75	0	+ 75	5450	+408	- 11	+397
T	4125	$+213$	- 10	+203	3050	+135	- 10	+125	1470	+ 36	0	+ 36	5040	$+336$	- 15	+ 321
G	4125	+114	-12	+102	3050	+ 72	- 12	+ 60 +	1520	+ 12	0	+ 12	4480	+196	- 15	+ 181
H	4125	+64	-16	+ 48	3050	+ 48	- 16	+ 32	1440	+ 18	-16	0	3950	$+127$	- 18	+ 109
$\frac{\mathrm{I}}{3}$	4125 4144	+60 $+\quad 32$	- 40	+20 ± 16	3050 000	+20 +16	- 20 -32	0 -16	1450 1430	+20 $+\quad 0$	- 20	0 -16	3680 3470	+114 +55	-35 -41	($+\quad 14$ $+\quad 14$
	4150	+ 20	- 60	- 40	3180				1570		-20	- 20	3150			
2	4150	+24	- 86	- 72	3430	0	- 72	$=72$	1610	0	-45	- 45	2830	+21	-65	$\underline{4}$
M	4170	+15	-249	-234	3490	$+14$	-210	-196	1430		- 80	- 80	2943	+18	-135	- 117
N	4190	+3	-220	-217	3390		-176	-176	1170		- 59	- 59	2000	+ 7	-100	- 93
0	8920		-194	-194	3480	0	-167	-167	1280	0	- 68	- 68	1680		-91	- 91
18				- 41				-34				- 13				
17				- 42				- 34				-14				- 12
16				- 43				- 34				- 12				- 10
15				- 43			- 38				-88				- 10
13				- ${ }^{\text {a }}$				- 60								
12				- 34				- 38				- 2				+ 3
110				$=21$ $=15$				- 81				+ 4				+ 0
9								$=1$				+				+14 $+\quad 8$
8				$+8$												+ 8
7				+ 8				$+8$				+ 6				
6				+ 8				+10				+ 7				
5			+ 10 $+\quad 8$			+10 +8				+10 $+\quad 7$				+10 $+\quad 7$
	.						.									
3				+ 5				+ 6				+ 6				± 6
1				$+\quad 8$ +1				+8 +1								$+\quad 3$ $+\quad 1$
Total.				+111				- 8				+154				+1302

Mean elevations and corrections for topography and isostatic compensation, separate zones, for United States stations-Contd.

Evtro	Eleva tion in feet	Topography	Compensa tion	Topog raphy and com. pensa tion	Elevation in feet	Topography	Com. pensa tion	Topography and pensation	Elevation in feet	Topography	Com-pensation	Topog raphy and com. pensstion	Elevation in feot	$\begin{gathered} \text { Topog- } \\ \text { raphy } \end{gathered}$	$\begin{aligned} & \text { Com- } \\ & \text { pense } \\ & \text { tion } \end{aligned}$	Topography and com-pensation
	Hughes, Tmpa., No. 108				Charleston, W. Va., No. 104				State College, Pa, No. 105				Fort Kent, Me, No. 108			
$\begin{aligned} & \text { A } \\ & \mathbf{D} \\ & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	$\begin{aligned} & 3260 \\ & 3200 \\ & \mathbf{\alpha 2 x 1} \\ & 3350 \\ & 3450 \end{aligned}$	$+\quad 2$ +68 +152 +255 +250	0 0 0 $-\quad 6$ $-\quad 8$	$+\quad 2$ +68 +152 +249 +242	$\begin{aligned} & 602 \\ & 602 \\ & 602 \\ & 625 \\ & 630 \end{aligned}$	+2 +56 +72 +39 +14	0 0 0 0	+2 +56 +72 +39 +14	$\begin{aligned} & 1174 \\ & 1174 \\ & 1180 \\ & 1165 \\ & 1160 \end{aligned}$	+62 +64 +112 +103 +55	0 0 0 0 0	$\begin{aligned} & +\quad 2 \\ & +64 \\ & +112 \\ & +103 \\ & +55 \end{aligned}$	524 525 525 525 525	+8 +56 +60 +30 +16	0 0 0 0 0	$\begin{aligned} & +2 \\ & +56 \\ & +60 \\ & +30 \\ & +16 \end{aligned}$
F G I	3720 904 4000 3800 3490	+154 +73 +31 +31 +24	-10 $=12$ $=21$ $=33$	+144 +61 +21 -16	785 855 880 980 985	+8 +8 0 0 0	0 0 0 0 -16	+8 0 0 0 -16	1122 1115 1165 1298 1270	$\begin{array}{r} +20 \\ 0 \\ +10 \\ +\quad 10 \end{array}$	0 0 0 -10 -16	$\begin{array}{r} +20 \\ 0 \\ 0 \\ 0 \\ -16 \end{array}$	$\begin{aligned} & 525 \\ & 525 \\ & 525 \\ & 525 \\ & 525 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ -8 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ -8 \end{array}$
K L M N	3250 3000 2340 2000 1	+6 $+\quad 6$ $+\quad 6$ +0 0	-45 $=72$ -138 $=98$ -87	-39 $=62$ -132 $=98$ -87	980 980 1140 12020 1670	-	-20 -24 -62 -64 -86	-20 -24 -62 -64 -86	1340 1475 1310 1230 1290	0 0 0 0 0 0	-20 -40 -75 -64 -73	-20 $=40$ $=75$ $=64$	525 530 750 830 670	0 0 0 0 0	-10 -12 -35 -47 -44	-10 -12 -35 -474 -44
18				- 14				-18								
17				- 12				-18				- 11				8
16				- 12				-14				- 10				-8
15				- 10				-12				- 8				-6
13								-11								
12				+ 3				-1				- 6				- 28
11				+ 8				+ 5				+ 0				+8
10				$+14$				+10				+ 12				+8
9				+ 0				+ 8				+ 8				+18
				+ 8				+ 8								
7				+ 6				+ 5				+ 6				+8 +6
5				+ 10				+6 +8				$+\quad 6$ $+\quad 7$				+8 +8
4				+ 7				+ 7				+ 6				$+6$
,				+ 6				+ 6				+ 6				
1				+ +1 +1				+8 +1				+4 +1				+6 +1
Total.				$+526$				-98				+100				$+9$
	Prentice, Wle, No. 107				Fergus Falls, Minn., No. 108				Sheridan, Wyo., No. 109				Boulder, Mont., No. 110			
	Ex	+ 2	0	+ 2	1200	+ 2			3773	+ 2	-	+ 2	1888		0	+ 2
$\frac{1}{1}$	${ }_{1539}$	+88 +124	0	+68 +124	1200 1200	+64 +112	0	+64	3.73 $3: 60$	+68 +158 +1	0 $-\quad 2$	+68 +156	4900	+ 68		+68
D	1500	+138 +138	0	+124 +138	1200	+112	0	+112 +108	3.60 37	+158 +20	- 6	+156 +264	19900	+164 +300	- 4	+160
E	1500	$+80$	0	+ 80	1200	+ 56	0	+ 56	3812	+291	- 8	+283	4900	+364	-8	+358
	1500	+ 80			1200	+ 20		$+20$	3840	+182	- 10	+172	5000	+208	- 18	$+250$
G	1500	+ 12	0	+ 12	1200				3883	+96	- 12	+ 84	5117	$+106$	- 28	$+143$
H	1500	+16	-16 -20		LVE1	+6	- 6	0	3881	+64	- 16	+ 48	5294	+115	- 32	+83
$\frac{1}{J}$	1500 1500	+20 $+\quad 0$	-20 -16	-16	1200 1200	$\begin{array}{r}\text { a } \\ +\quad 8 \\ \hline\end{array}$	-8	0 -16	3885 4025	+60 +30	-40 $=46$	+81 +20 18	5600	+78 +49	$=40$ $=68$	+ +38 +19
			-20	- 20	100											
1	14×3	0	-44	- 44	1105	0	-24	- 24	5215	+ 12	-121	-109	6346	+	-153	-66 -120
M	148	0	-82	-88	1128	0	-63	-63	6093	+ 1	-358	-357	5314	+ 23	-310	-287
N	1359	0	-71	- 71	1156	π	-58	- 58	5375	+ 8	-284	-275	5950	+ 17	-317	-300
0	1088		-61	-61	1262	0	-69	- 60	4736	+ 2	-229	-227	5065		-287	-287
18				- 9				- 12				- 46				
17				= 9				- 12				- 49				- 53
15				- 9				- 12				- 51				- 50
14				- 8				$=16$				- 40				- 51
13				- 19				- 26								
11				- 18				- 16	- 49				- 78
11				- 10				- 15				- 34				二 82
10				- 8				- 18				- 80				- 18
9				- 3				- 7				- 6				- 2
8								- s								
7				+ 5				+ 6				+ 6				+ 6
5				+8				+ 9				+8				+ 8
1				\pm				+6 $+\quad 6$				+				+8 +8
4				\pm				± 4				+ ${ }^{4}$	\pm
1				+ 1				+ 1				+1 +1				
Total.				$+100$				+ 9				-306				- 73

Mean elevations and corrections for topography and tsostatic compensation, separate zones, for United States stations-Contd.

Zome	$\begin{aligned} & \text { Elevar } \\ & \text { tion in } \\ & \text { feot } \end{aligned}$	Topography	Com. penser tion	$\begin{aligned} & \text { Topog- } \\ & \text { raphy } \\ & \text { and } \\ & \text { poms } \\ & \text { penss } \\ & \text { tlon } \end{aligned}$	$\begin{aligned} & \text { Eleva- } \\ & \text { tion in } \\ & \text { Cent } \end{aligned}$	Topography	$\begin{gathered} \text { Com- } \\ \text { pense- } \\ \text { tion } \end{gathered}$	Topeg raphy and Exils. penso tion	$\begin{aligned} & \text { Eleva } \\ & \text { tion in } \\ & \text { lent } \end{aligned}$	Topog. raphy	$\begin{gathered} \text { Com- } \\ \text { pensa } \\ \text { tion } \end{gathered}$	Topog raphy and compensa tion	$\begin{aligned} & \text { Eleva- } \\ & \text { tion in } \\ & \text { foest } \end{aligned}$	Topography	Compensar tion	Topog rsphy and compensa tion
	Skyomish, Wash., No. 111				Olgmpla, Wash., No. 112				Heppner, Oreg., No. 113				Truckeo, Cal., No. 114			
A B C D E	$\begin{array}{r} 920 \\ 920 \\ 920 \\ 933 \end{array}$	+2 +64 +96 +72 +28	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$+\quad 2$ +64 +96 +728 +28	62 60 60 60 60	+2 +16 +4 0 0	0 0 0 0 0	$\begin{array}{r} +\quad 3 \\ +\quad 16 \\ +\quad 4 \\ 6 \\ 0 \end{array}$	1000 1000 10001 1000 1000	$+\quad 2$ +68 +136 +180 +134	11 0 0 -6	$\begin{aligned} & +2 \\ & +68 \\ & +136 \\ & +180 \\ & +128 \end{aligned}$	5922 M 5925 8345 6019	$+\quad 2$ +68 +163 +308 +420	0 0 $=$ $=$ -16	$\begin{aligned} & +2 \\ & +68 \\ & +159 \\ & +302 \\ & +404 \end{aligned}$
F H H I	1740 1925 2275 2855 3575	+8 $=5$ $=19$ -19	$-\quad 5$ $=\quad 6$ $=13$ $=10$	$=12$ $=11$ $=16$ $=46$	60 60 60 60 60	0 0 0 0 0	0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1960 1907 1980 1900 1600	+69 $+\quad 35$ +32 $+\quad 20$ 0	$=9$ $=11$ $=16$ $=16$	+60 $+\quad 21$ +16 -16	6070 6142 6150 6355 6751	+844 +211 +2151 +123 +64	- 20 $=24$ $=32$ $=81$ -75	$\begin{array}{r} +324 \\ +187 \\ +119 \\ +72 \\ +11 \end{array}$
N L M N O	3625 3288 2688 2081 1775	-22 $=9$ +2 1	-82 $=79$ -188 -109 -90	-74 $=88$ -162 -107 -91	75 88 809 12006 1174	0 0 0 0 0	0 0 -17 -62 -58	0 0 -17 -68 -68		0 0 0 0 0	-20 $=86$ $=133$ -133 -151	-20 $=36$ -133 -133 -151	7005 6912 5857 4875 3661	+62 +38 +33 +88 +1	-120 $=163$ -342 -254 -183	$\begin{aligned} & -58 \\ & -125 \\ & -309 \\ & -246 \\ & -182 \end{aligned}$
18				- 17				- 6				- 35				
17				- 16				- 6				- 33				- 37
16				- 16				- 5				- 31				- 40
15				- 16				- 4				- 27				- 43
14				- 16				-6			.	- 32				- 37
13				- 29				- 18				$\begin{array}{r}-49 \\ -93 \\ \hline\end{array}$				- 28
11				- 10				- 3				- 16				+10 +10
10				- 1				$+5$								
1				+ 3				+ 5				+ 6				+8
7				+ 8				+ 10				+10				
7				+8 $+\quad 7$				+ $+\quad 6$ $+\quad$				$+\quad 7$ $+\quad$				+ +8 +8
5				+ 8				+ 8				+ 8				8
1								+ 7			+ 7				+88
3				+3 $+\quad 3$				+3 $+\quad 3$ +1				+3 $+\quad 3$				+1 +1
Total.																
				-473				-116				-60				$+572$
	Winnemucca, Nev., No. 115				Ely, Nev., No. 116				Guernsey, Wyo., No 117				Pierre, S. Dak., No. 118			
	480															
B	4×0	+68 +159	0 $-\quad 3$	+ 68	6435	+68	- 0	+68	4140	+ 68	- 0	+68	1490	+64 +6 +124	0	$+64$
C	4900	+159 +282	- 3	+156 +276	6437	+164 +314	$=4$	+160 +308 +8	4340 4108	+157 +282	$=\frac{1}{6}$	+156 +276 +23	1490 1490	+124 +138 +	0	+124 +138
E	4300	+282 +328	- 8	+ +320	6425	+314 +440	- 16	+308 +424	4384	+331	二 8	+126 +323	1480		0	+88 +80
	4100	+230	- 10	$+220$	6800	+381	- 20	+361	4423	+225	- 10	+215	140	+ 30	0	+ 30
0			- 12				- 24						100			+12
H	4600	+83	- 21	+ 68	6835	+170	- 82	+138	4541	+ 79	- 18	+61	1490	+16	-18	
$\frac{1}{J}$	4425 4468	+76 +35	-40 -48	+36 +13	6930 7237	+142 +73	-60 -78	+82	4616 4896	+67 +40	- 40	+87 +8	14998	+20 $+\quad 0$	-20 -16	$\begin{array}{r} 0 \\ -16 \end{array}$
	${ }^{1}$	+ 29	- 69	- 40	7745	+ 74	-138	- 64	4750	+ 31	-72	- 41	IMM	0	- 20	
	4508	+28	-107	- 79	7446	+83	-170	-137	4839		-96	-98	1703	0	- 41	- 41
M	nowe	+14	-294	-280	bal	+37	-396	-359	5114	+ 12	-305	-293	171	0	-101	-101
N	5156	+ 14	-279	-265	6531	+20	-346	-326	5400	+ 11	-288	-277	1956	II	-95	-95
0	5643		-276	-275	01%	0	-301	-301	6475	0	-268	-208	2107	0	-108	-108
				- 55				- 69				- 54				- 22
17				- 54				- 57				- 55				-22
16				- 57				- 57				- 56				- 23
15			- 56	- 56	- 54			$=88$
							-			- 82	-
13				- 77				- 78				-84				-48
12				- 32				- 38				- 48				-87
11				-8				-17				- 33				二 88
${ }_{9}^{10}$				+3 $+\quad 4$				- 0				- 22				-17 -88
				+ 11				$+11$								
7				+ 8				+ 8				+ 7				$+8$
6				+ 8				+ 8				+ 8				+8
5				+88				+ 8				+10				+11
4	$+8$				+ 8				+ 8				$+7$
3				$+4$				+ 6				+ 6				
2				+				\pm				+ 8				+
1			+ 1								+ 1				
Total.				- 37				+202				-163				-182

Mean elevations and corrections for topography and isostatic compensation, separate zones, for United States stations-Contd.

Zone	Elevation in feet	Topography	Com-pensetion	$\begin{gathered} \text { Topog- } \\ \text { raphy } \\ \text { sad } \\ \text { com- } \\ \text { pensa- } \\ \text { tion } \end{gathered}$	Elevation in foet	Topography	Com-pensbtion	Topog raphy and com. pensation	Elevation in feet	Topography	Com-pensetion	Topog raphy and pensstion	Eleva tion in feet	Topography	Com. pensation	Topography and compenss tion
	Fart Dodge, Iewa, No. 119				Kaithsburg, Ill., No. 120				Grand Rapids, Mich., No. 121				Angola, Ind., No. 122			
A	1116	$+2$	0	+ 2	547	$+2$	0	$+2$	774	+ 2	0	$+2$	1043			
B	1116	+64	0	+64	547	+56	0	+56	774	+60	0	$+60$	1043	$\pm{ }^{+}$	0	+82 +84
C	1116	+108	0	+108	5×1	$+64$	0	+64	774	+84	0	+84	1043	+104	0	+104
D	1116	+ 98	0	+ 88	550	+36	0	+36	774	+54	0	+54	1040	+90	0	+90
E	1116	+ 48	0	+ 48	550	$+16$	0	$+16$	774	+24	0	+24	1040	+ 40	0	+40
$\underset{\mathrm{G}}{\mathrm{F}}$	1116 1116	+20 +0	0	+ 20	550 550	0	0	0	774 774	+10 0	0	+10	1040 1000	+20 $+\quad 0$		
H	1116	+ 4	-1	0	550	0	0	-	774	0	0	0	1000	0	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
I	1116	+ 5	-5		550		0	0	730	0	0	0	1000	0	0	
J	1116		-16	-16	550	1	-16	-16	737	0	-16	-16	1000	0	-16	-16
K	1116	11	-20	- 20	550	0	-20	-20	737	0	-20	-20	1000	D	-20	
L	1110	0	-24	-24	550	0	-24	-24	690	0	-24	-24	971	0	-24	- 24
M	1150	0	-63	- 63	614	0	-33	-33	683	0	-37	-37	902	0	-53	- 53
N	1103	0	-54	- 54	662	0	-32	-32	711	0	-39	-39	744	0	-36	- 38
\bigcirc	1139	0	-61	- 61	688	0	-38	-38	713	II	-44	-44	737	0	-41	- 41
18				- 11				- 7				- 7				
17				- 11				-7				二7				$=7$
15				- 12				$=8$				- 8				- 8
14				- 13				-9				-8				-8
13				- 22				-18				-16				
111				- 15				-11				-10				-8
10				- 11				-8				- 1				$\overline{1}$
9				- 0				- 2				$+1$				+ 2
8				0				$+3$				$+6$				
7				+ 7				$+7$				+ 7				+ 7
5				+ +10				+8 +10				+8 +8				+8 +8
4				+ 6				+ 7				+6				+8 $+\quad 8$
				+ 4				+5				+5				
1				+ 4				+8				$+4$				+ 4
Total.																
				+15				-27				+31				+111
	Albany, N. Y., No. 123				Port Jervis, N. Y., No. 124				Atlantic City, N. J., No. 125				Bridgehampton, N. Y., No. 126			
	800	$+2$	0	$+2$	461	$+2$		+2								
${ }^{\text {B }}$	185	+40 +13	0	+40 +13	861	+56	0	+56	14	+2	-	+ 2	32	+8	0	
D	183	+13 +6	${ }_{0}^{0}$	+13	451	+52 +23	0	+52 +23	14	0	0		32 35	0	0	0
E	172	$+7$	0	$+7$	465	$+8$	0	+ 9	0	0	,	0	42	0	0	0
	155	\square			568	$+4$		$+1$	-4							
${ }^{6}$	1 HK	0	0	0	727	0	0		- 6	0	0	0	52	0	0	0
II	$1 / 6$	0	0	0	919	0	0		-8	0	0	0	68	0	0	0
$\frac{1}{5}$	$\begin{aligned} & 257 \\ & 306 \end{aligned}$	0	- 2	- ${ }^{0}$	948 958	-6	-3 -15	-15	10 -9	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 28 \\ -8 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	0 0
			- 7													
L	671	1	-16	-15	883	0	-27	-27	-9	0	0	0	- ${ }^{-16}$	0	+1	
M	922	0	-54	-54	1007	0	-58	-58	$+1$	0	0	0	-54	0	+3	+
N	1215	0	-63	-63	888	0	-49	-49	-21	0	0	0	1	0	0	0
0	1071	0	-57	-57	713	0	-38	-38	+15	0	0	0	75	0	-1	- 1
18				-8				-7				$+1$				
17	...		,	-8	$=7$				+ 4				+ 5
15				-8	.			- 8	.			+10				+ + +
14				-1				- 0				+14				+8 +8
13				$+1$				$+7$				$+21$				
12				+14				$+17$				+ 19				+22 +22
11				$+15$				$+17$				+ 20				+25
10 9				$+14$				$+14$				+ 18				+20
				+10				$+10$.			+18				+18
8				+14								$+15$				
7				+8				+8				+ 6				+ 6
6			+8				+ 6				+ 6				+ 6
4			+88				+6 +6				+6 +8				+ 6
3 2				$+0$				$+6$				± 0				$+6$
1				+				+				+				+ ${ }^{+}$
Total				-60				+26				+185				+198

Meen elrentions and corrections for topography and isostatic compensation, separate zones, for United States stations-Contd.

Mean elevations and corrections for topography and isostatic compensation, separate zones, for United States stations-Contd.

Zone	Elevation in feet	Topography	Com-pensstion	Topog raphy and com-pensstion	Elevetion in feet	Topography	Com-pensstion	Topography and com-pensation	Elova tion in feet	Topog. raphy	Come pensation	Topog raphy and compensa tion	Eleva tion in feet	Topog. raphy	Com-pensation	Topog raphy and pense tion
	Parkersburge W.Va., No. 135				Columbus, Ohio, No. 138				Indianapolis, Ind., No. 137				Springfield, III., No. 138			
A	600	$+2$	0	+2	20	+2	0	$+2$	713	$+2$	0	$+2$	600	$+2$	0	$+2$
H	615	+56	0	$+56$	700	+60	0	$+60$	710	+60	0	$+60$	600	+56	0	+56
C	618	+72	0	$+72$	755	+84	0	+84	710	+80	0	+80	600	+72	0	$+78$
D	612 631	+42 +16	0	+42 +16	$\begin{array}{r}757 \\ 752 \\ \hline\end{array}$	+55 +24	0	+55 +24	710 700	+48 +20	0 0 0	+48 +20	600 596	+42 +20	0	+42 +20
			0		758	+10	0	+10	700							
${ }_{0}$	685	$+\frac{1}{0}$	0	$+\frac{1}{0}$	750	+10 +2	-2	0	700	+12 +8	- ${ }^{2}$	+10	591	+5 +0	0	+ ${ }_{0}$
H	709	+3	-3	0	761	+3	- 3	0	750	+3	-8	0	W3	+ 3	-8	0
I	742	+8	-8	9	780	+8	-8	0	750	+10	-10	0	592	+5	- 5	0
J	719	0	-16	-16	802	0	-11	-11	800	0	-8	-8	593	0	-8	-8
K	775	0	-20	-20	838	0	-15	-15	800	0	-10	-10	598	0	-10	-10
\underline{L}	800	0	-24	-24	00	0	-24	-24	800	0	-24	-24	000	0	-12	-12
M	921	0	-52	-52	-00	0	-56	-56	850	0	-50	-50	579		-28	-28
N	1000	0	-51	-51	994	0	-48	-48	794	0	-41	-41	581	0	-32	-32
0	1221	0	-68	-68	879	0	-56	-56	675	0	-34	-34	568	0	-30	-30
18				-14				- 8				- 7				-6
17				-14			- 10			- 7	-		-6
15				-18				-8	,			-7				${ }^{6}$
14				-10				- 9				- 7				-
13				-15				-15				-16				-17
12				-4				-8				-8				-10
11				$+5$				- 5				-6				-8
5				+8 +5				+8 +6				+ 6			,	+
6				+6				+ 7				+8				$+8$
5				+8				+8				$+8$				$+10$
4				+ 7	.			$+7$				+ 7				$+7$
3				$+6$				+ 6				+ 5				+ 5
2			,	$+3$				+				$+$				+
Total.																
				-58				$+0$				+34				$+47$
	Lebanon, Mo., No. 139				Joplin, Mo., No. 140				Fort Smith, Ark., No. 141				Texarkana, Ark., No. 142			
	1203	$+2$		+ 2	994			+ 2	442	$+2$		$+2$	88	$+2$		$+2$
A	1280	+ 81	0	+ 64	995	+ 64	0	+ 64	450	+56	8	+56	325	+48	0	+48
C	1581	$+116$		+116	995	+104	0	+104	N0	+52	0	+52	525	+36	0	+36
D	1240	+114	0	+114	992	+ 84	0	+84	450	+24	0	+24	318	+14	0	+14
E	1225	+ 70	- 1	+ 66	988	+ 43	-8	+ 40	450	$+8$	0	$+8$	310	$+8$	0	+8
	1230	+ 31	-5	+ 28	1002	+ 19	-3	+16	465	0	0	0	308	0	0	
a	183	$+10$	- 6	+ 4	988				479	0	0	0	316	0	0	0
H	1830	+ 6	- 6	0	9	+ 5	- 5	0	462	0	-	0	316	0	0	0
$\frac{\mathrm{I}}{\mathrm{J}}$	1145 1131	+10 +3	-10 -12	0 -8	${ }_{972}^{992}$	+ 10	-10 -16	0 -16	459 512	+5 +4	-5 -8	0 -1	310 300	0	0	0
	1145	0	-20	- 20	1050	0	-20	- 20	852		- 7	-7	285			
L	1096	0	-24	= 24	1000	0	- 24	- 24	${ }_{871}$	0	-14	-14 -50	367	0	-8	-8
$\frac{\mathrm{M}}{\mathrm{N}}$	11131	0	-83	- 83 -85	1029	0	-57	[87 -54	871 1006	0	-50 -52	-50 -52	351 03	0	-21 -28	-21 -28
1	1032	0	- 57	- 87	1032	II	-62	- 62	911	,	-47	-47	512	0	-33	-38
18								- 12				-8				
17				- 9				- 11				-7				- 5
18				- 9	- 11		- 7				-5
15				- 7				- 10				-8				- 5
14				- 7				- 10				-8				- 6
13				- 17				- 17				-14				-8
12				- 11				- 12				-11				-8
11				- 11				- 13				-10				- 8
10				- 8				- 11				-8				-8
9				- 1				- 5				-				- 3
												+2				
7				+ 8				+ 8				+ 8				+8
8			+ 8				+ 8				+8				+8
5				+ 11				$+11$				+11				+11
1				+ 8				+ 7				+8			+8
				+ 6								+ 5				
2				+ 3				+				+ 8				$+3$
1				+ 1				+ 1				+1				+1
Total.				+118				$+10$				-70				$+7$

Mean elevations and corrections for topography and isostatic compensation, separate zones, for United States stalions-Contd.

Mean elevations and corrections for topography and isostatic compensation, separate zones, for United States stations-Contd.

Zone	Elevation in foct	Topography	$\begin{aligned} & \text { Com- } \\ & \text { pensa- } \\ & \text { tion } \end{aligned}$	Topog raphy 8nd compenss	Elevation in fies!	Topog. raphy	$\begin{aligned} & \text { Com- } \\ & \text { pensa- } \\ & \text { tion } \end{aligned}$	Topog raphy and com-pensa-	Elevation in Iest	Topography	Com-pensstion	Topog raphy and com-pensstion	Elevation in feet	$\begin{aligned} & \text { Topog- } \\ & \text { raphy } \end{aligned}$	$\begin{aligned} & \text { Com- } \\ & \text { penss } \\ & \text { tion } \end{aligned}$	Topography 8 nd pensetion
	Charlotte, N, C., No. 151				Asheville, N. C., No. 152				Cleveland, Tenn., No. 153				Winston-Salem, N. C., No. 154			
$\begin{gathered} \mathrm{F} \\ \mathrm{G} \\ \frac{\mathrm{H}}{1} \\ \frac{1}{J} \end{gathered}$	$\begin{aligned} & 705 \\ & 707 \\ & 702 \\ & 701 \\ & 607 \end{aligned}$	+12 +2 +3 +6 +1	-2 $=2$ $=3$ $=8$	$\begin{array}{r} +10 \\ 0 \\ 0 \\ 0 \\ -\quad 7 \end{array}$	$\begin{aligned} & 2220 \\ & 2225 \\ & 2162 \\ & 2265 \\ & 2312 \end{aligned}$	$\begin{aligned} & +79 \\ & +\quad 41 \\ & +19 \\ & +\quad 20 \\ & +\quad 5 \end{aligned}$	$-\quad 3$ $=12$ -16 -20 -21	$\begin{aligned} & +74 \\ & +\quad 3 \\ & +\quad 3 \\ & -16 \end{aligned}$	$\begin{aligned} & 845 \\ & 872 \\ & 834 \\ & 825 \\ & 853 \end{aligned}$	$\begin{array}{r} +13 \\ +3 \\ +3 \\ +8 \\ +8 \end{array}$	-3 $=3$ $=3$ $=8$ -16	$\begin{array}{r} +10 \\ 0 \\ 0 \\ 0 \\ -16 \end{array}$	$\begin{aligned} & 900 \\ & 0000 \\ & 900 \\ & 900 \\ & 900 \end{aligned}$	$\begin{aligned} & +13 \\ & +8 \\ & +3 \\ & +8 \\ & +8 \end{aligned}$	-3 $=3$ $=3$ -8 -16	$\begin{array}{r} +10 \\ 0 \\ 0 \\ 0 \\ -16 \end{array}$
$\begin{aligned} & \mathrm{K} \\ & \frac{L}{2} \\ & \frac{\mathrm{~N}}{\mathrm{~N}} \end{aligned}$	673 688 595 904	0 0 0 0 0 0	-11 -24 -34 -38 -50	- 11 $=24$ $=34$ $=38$ 50	2500 2801 2657 1706 1415	$+\quad 7$ $+\quad 0$ $+\quad 0$ 0	-42 $=88$ -168 -85 -74	-35 $=68$ -153 $=85$ -74	828 880 1157 1394 1236	0 0 0 0 0 0	-20 -24 -67 -71 -65	-20 -24 -67 -71 -65	900 900 829 995 1146	0 0 0 0 0	-20 -24 -16 $=-51$ -67	$\begin{aligned} & =20 \\ & =24 \\ & =46 \\ & =81 \\ & =87 \end{aligned}$
$\begin{aligned} & 18 \\ & 17 \\ & 16 \\ & 15 \\ & 14 \end{aligned}$				-9 $=9$ $=8$ 10				$=12$ $=11$ $=10$ $=88$				-10 $=10$ $=9$ $=7$ 8				$\begin{aligned} &=10 \\ &=10 \\ &= 5 \\ &=8\end{aligned}$
$\begin{gathered} 13 \\ 12 \\ 11 \\ 10 \\ 9 \end{gathered}$				+7 +11 +16 +11				$\begin{aligned} & -7 \\ & +8 \\ & +8 \\ & +88 \end{aligned}$				-7 +0 +6 +10 +8				$\begin{aligned} & +8 \\ & +10 \\ & +14 \\ & +11 \\ & +11 \end{aligned}$
$\begin{aligned} & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \end{aligned}$				$\begin{aligned} & +8 \\ & +8 \\ & +8 \\ & +8 \end{aligned}$				$\begin{aligned} & +8 \\ & +8 \\ & +\quad 7 \\ & +\quad 7 \end{aligned}$				+6 +6 +7 +10 +7				$\begin{array}{r} +10 \\ +\quad 5 \\ +\quad 8 \\ +\quad 8 \end{array}$
$\begin{aligned} & 3 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$				+6 $+\quad 3$ +1				+6 $+\quad 3$ +1				+6 +8 +1				+6 $+\quad 8$ $+\quad 1$
Total.				+148				+256				+19				+124
	Knoxville, Temn., No. 155				Bristol, V8., No. 156				Homestead, Fla., No. 157				Sobring, Fla., No. 158			
$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 919 \\ & 919 \\ & 020 \\ & 601 \\ & 000 \end{aligned}$	$\begin{aligned} & +2 \\ & +64 \\ & +96 \\ & +78 \\ & +38 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ -2 \end{array}$	$\begin{aligned} & +2 \\ & +64 \\ & +96 \\ & +78 \\ & +36 \end{aligned}$	$\begin{aligned} & 1685 \\ & 1685 \\ & 1685 \\ & 1685 \\ & 1700 \end{aligned}$	$\begin{aligned} & +2 \\ & +68 \\ & +128 \\ & +156 \\ & +104 \end{aligned}$	0 0 0 -1	$\begin{aligned} & +2 \\ & +68 \\ & +128 \\ & +156 \\ & +100 \end{aligned}$	14 12 14 14 14	$\begin{array}{r} +2 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	0 0 0 0 0	a $+\quad 2$ 0 0 0 0	$\begin{aligned} & 112 \\ & 112 \\ & 115 \\ & 112 \\ & 100 \end{aligned}$	$\begin{array}{r} +2 \\ +26 \\ +4 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} +2 \\ +\quad 28 \\ +\quad 4 \\ 0 \\ 0 \end{array}$
$\begin{gathered} \mathrm{F} \\ \mathrm{G} \\ \frac{H}{H} \\ \frac{I}{8} \end{gathered}$	$\begin{aligned} & 880 \\ & 875 \\ & 109 \\ & 805 \\ & 825 \end{aligned}$	+15 +6 +3 +8 +8	-3 $=3$ $=3$ $=-16$	+12 +3 0 0 -18	1725 179 1846 183 1825	$\begin{aligned} & +55 \\ & +30 \\ & +10 \\ & +\quad 20 \end{aligned}$	$=8$ $=8$ $=10$ $=16$	$\begin{array}{r} +50 \\ +24 \\ 0 \\ 0 \\ -16 \end{array}$	14 14 14 14 14	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0	0 0 0 0 0	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0
$\begin{aligned} & \mathrm{K} \\ & \mathrm{~L} \\ & \mathbf{M} \\ & \mathrm{~N} \\ & \mathbf{0} \end{aligned}$	$\begin{gathered} 825 \\ 1004 \\ 17404 \\ 1719 \\ 1550 \end{gathered}$	0 0 0 0	-20 -24 -79 -88 -88	-20 -24 -79 -88 -88	1840 2100 2371 2125 1575	a $+\quad 3$ $+\quad 0$ 0 0	$=29$ $=51$ $=139$ -110 -87	-28 $=51$ -137 -110 -87	2 13 -77 -312 -439	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 +1 +19 +21	0 +0 +19 $+\quad 19$	100 10 83 68 11	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 -4 -4 0	$\begin{array}{r}0 \\ -\quad 0 \\ -\quad 1 \\ \hline 0\end{array}$
$\begin{aligned} & 18 \\ & 17 \\ & 16 \\ & 15 \\ & 14 \end{aligned}$				-13 -12 -11 -8 -8				$\begin{aligned} & -14 \\ & =13 \\ & =12 \\ & =10 \end{aligned}$				$+\quad 5$ $+\quad 4$ $+\quad 4$ $+\quad 5$				+1 $+\quad 2$ +86 +8
$\begin{aligned} & 13 \\ & 12 \\ & 11 \\ & 20 \\ & 9 \end{aligned}$				$\begin{aligned} & -8 \\ & +1 \\ & +18 \\ & +7 \end{aligned}$				$\begin{aligned} & +8 \\ & +88 \\ & +\quad 8 \\ & +88 \end{aligned}$				$\begin{aligned} & +36 \\ & +41 \\ & +47 \\ & +87 \\ & +15 \end{aligned}$				+89 +31 +84 +25 +14
$\begin{aligned} & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \end{aligned}$				$\begin{aligned} & +6 \\ & +6 \\ & +7 \\ & +10 \\ & +7 \end{aligned}$				$\begin{aligned} & +8 \\ & +6 \\ & +10 \\ & +\quad 7 \end{aligned}$				$\begin{aligned} & +10 \\ & +5 \\ & +5 \\ & +10 \\ & +8 \end{aligned}$	\ldots			$\begin{aligned} & +18 \\ & +8 \\ & +10 \\ & +8 \end{aligned}$
1 2 1				$\begin{aligned} & +\theta \\ & +8 \\ & +1 \end{aligned}$				$\begin{aligned} & +8 \\ & +8 \\ & +\quad 1 \end{aligned}$				$\begin{aligned} & \pm 6 \\ & \pm 8 \\ & +\quad 1 \end{aligned}$				+6 +81
Total.				-13				+118				+292				+228

Mean elevations and conrections for topography and isostatic compensation, separate zones, for United States stations-Contd.

Zame	$\begin{aligned} & \text { Mlevz } \\ & \text { tionin } \\ & \text { feet } \end{aligned}$	Topography	Com. pensia tion	$\begin{aligned} & \text { Topog- } \\ & \text { raphy } \\ & \text { com. } \\ & \text { comson } \\ & \text { tion } \end{aligned}$	Elevar tion in foet	Topog. raphy	Compensa tion	Topography and com-pensetion	Elevar tion in foet	Topography	$\begin{aligned} & \text { Com- } \\ & \text { pensa- } \\ & \text { tion } \end{aligned}$	Topograpliy and pensstian	Eleva tion in fent	Topography	Compensa tion	Topog. raphy and comtion
	Titusvilie, Fta, No. 159				Leeeburg, Fla., No. 160				Cedar Koys, Fle, No. 161				Macon, Ga., No. 162			
$\begin{aligned} & A \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \\ & \mathbf{E} \end{aligned}$	8 8 10 10 10	$\begin{array}{r} +2 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 2 \\ +\quad \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} 100 \\ 85 \\ 90 \\ \hline \mathbf{8 0} \\ 80 \end{array}$	$\begin{array}{r} +2 \\ +24 \\ +4 \\ +8 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & +2 \\ & +24 \\ & +\quad 4 \\ & +8 \end{aligned}$	8 8 4 4	$\begin{array}{r} +2 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 2 \\ +\quad \begin{array}{r} 10 \\ 0 \\ 0 \\ 0 \end{array} \end{array}$	505 851 326 300 5001	+2 +50 +36 +15 +4	0 0 0 0 0	$\begin{aligned} & +2 \\ & +50 \\ & +36 \\ & +15 \\ & +4 \end{aligned}$
$\begin{gathered} \mathrm{F} \\ \mathrm{G} \\ \frac{\mathrm{H}}{\mathrm{I}} \\ \frac{I}{J} \end{gathered}$	10 10 10 10 10	0 0 0 0 0	0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & \frac{2}{2} \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 350 \\ & 350 \\ & 400 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 -1 $=2$ $=$ -8	- $=$ -1 -8 -8
$\begin{aligned} & K \\ & \frac{L}{L} \\ & \frac{M}{N} \\ & \mathbf{N} \end{aligned}$	10 15 6 -35 -302	0 0 0 0 0	0 0 0 0 +17	$\begin{array}{r} 0 \\ 0 \\ 0 \\ +\quad 17 \end{array}$	$\begin{aligned} & 80 \\ & 80 \\ & 92 \\ & 59 \\ & 18 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 -4 -3 0	$\begin{array}{r} 0 \\ 0 \\ -\quad 4 \\ -\quad 3 \\ 0 \end{array}$	$\begin{array}{r} \frac{2}{2} \\ -5 \\ -\quad 9 \\ 22 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & 457 \\ & 481 \\ & 525 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	-6 -10 -28 -30 -30	-6 $=10$ -28 -30 -30
$\begin{aligned} & 17 \\ & 17 \\ & 16 \\ & 15 \\ & 14 \end{aligned}$				$+\quad 4$ $+\quad 5$ $+\quad 5$ $+\quad 8$				$\begin{array}{r}0 \\ +\quad 1 \\ +\quad 2 \\ +\quad 8 \\ \hline\end{array}$				0 0 $+\quad 7$ +10			= 5 $=5$ $=5$ $=$ -8
$\begin{aligned} & 13 \\ & 12 \\ & 11 \\ & 10 \end{aligned}$				+86 +30 +34 $+\quad 84$ +14				+24 +28 +28 +21 +14	……			+22 +20 +20 +18 +18	\ldots		.	+1 +8 +11 +16 +10
$\begin{aligned} & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \end{aligned}$				+14 $+\quad 6$ +6 $+\quad 10$ +8				+12 $+\quad 5$ $+\quad 6$ +10 +8				+11 $+\quad 8$ $+\quad 7$ $+\quad 7$				+8 +8 +7 +10 +7
$\begin{aligned} & 3 \\ & 2 \\ & 2 \end{aligned}$				$\begin{array}{r}+8 \\ +\quad 8 \\ +\quad 1 \\ \hline\end{array}$				$\begin{array}{r}+8 \\ +\quad 6 \\ +\quad 1 \\ \hline\end{array}$				$+\quad 6$ $+\quad 3$ $+\quad 1$				+6 +3 +1
Total..				+228				+206				+163				$+67$
	Albany, Ga, No. 163				Pensacola, Fla., No. 164				Opelika, Ala., No. 165				Huntsville, Als., No. 168			
$\begin{aligned} & A \\ & \mathbf{A} \\ & \mathbf{C} \\ & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	$\begin{gathered} 190 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \end{gathered}$	+2 +40 +16 $+\quad 6$ +1	0 0 0 0 0	$+\quad 2$ +40 +16 $+\quad 6$	6 11 11 11	+1 +2 0 0 0	0 0 0 0 0	$\begin{array}{r} +1 \\ +\quad 2 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 805 \\ & 886 \\ & 800 \\ & 800 \\ & 800 \end{aligned}$	$\begin{aligned} & +2 \\ & +60 \\ & +88 \\ & +83 \\ & +28 \end{aligned}$	0 0 0 0 0	$\begin{aligned} & +2 \\ & +60 \\ & +88 \\ & +63 \\ & +28 \end{aligned}$	$\begin{aligned} & 655 \\ & 655 \\ & W \\ & 650 \\ & 650 \end{aligned}$	$\begin{aligned} & +2 \\ & +58 \\ & +76 \\ & +48 \\ & +16 \end{aligned}$	0 0 0 0 0	+2 +58 +76 +48 +16
$\begin{gathered} F \\ \frac{H}{H} \\ \frac{1}{3} \end{gathered}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	0 0 0 0 0	0 0 -1 $=2$ -3	0 -1 $=\quad 1$ -8	...	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	750 754 750 732 85	$\begin{array}{r} +12 \\ +4 \\ +8 \\ +7 \\ 0 \end{array}$	-2 -3 $=3$ -8 -16	+10 $+\quad 1$ $-\quad 1$ -16	630 675 772 762 785	$\begin{array}{r} +10 \\ 0 \\ +8 \\ +8 \\ 0 \end{array}$	0 0 -3 -8 -16	+10 0 0 0 -16
$\begin{gathered} K \\ \frac{Z}{M} \\ \frac{M}{N} \\ O \end{gathered}$	$\begin{aligned} & 300 \\ & 800 \\ & 201 \\ & 208 \\ & 2000 \end{aligned}$	0 0 0 0 0	$=4$ $=7$ $=13$ $=15$	$=4$ $=13$ $=12$ $=10$	$\begin{array}{r} 21 \\ -16 \\ -158 \end{array}$	0 0 0 0 0	0 0 0 0 +9	$\begin{array}{r}0 \\ 0 \\ 0 \\ +\quad 0 \\ \hline\end{array}$	680 610 567 581 632	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	-20 -16 -32 -31 -33	$=20$ $=16$ $=32$ $=33$	715 742 8312 812 711	0 0 0 0 0	-20 $=24$ $=47$ $=43$ $=40$	-20 -24 $=47$ $=43$ -40
18																
17								+3 +3			.	- 5				-7 -8
12				+8 +10				+18				+ 4				- 5
10				+15				+ 8				+12				+8
7				+8 +6												+ 5
6				$+\quad 7$ $+\quad 10$				+ 8				+ 7				+7 +7
5 4				+10				$+10$				+10				+10 +7
$\begin{aligned} & 3 \\ & 2 \\ & 1 \end{aligned}$				$\begin{aligned} & +6 \\ & +8 \\ & +\quad 1 \\ & \hline \end{aligned}$				$\begin{aligned} & +6 \\ & +\quad 3 \\ & +\quad 1 \end{aligned}$				+6 $+\quad 3$ $+\quad 1$				$\begin{array}{r}+6 \\ +3 \\ +1 \\ \hline\end{array}$
Total..				+107				+135				+167				+34

Mean elevations and corrections for topography and isostatic compensation, separate zones, for United States stations-Contd.

Mean elevations and corrections for topography and isostatic compensation, separate zones, for Uniled States stations-Contd.

Mean elevations and corrections for topography and isostatic compensation, separate zones, for United Slates stations-Contd.

Afean elevations and corrections for topography and lsostatic compensation, separate zones, for United States stations-Contd.

Zollt	Elevs tion in font	Topography	Compenser tion	Topography and pensation	Elever tion in feet	Topography	Compenses. tion	Topog raphy and compensa tion	Elova tion in feet	Topography	Compersia tion	Topog. raphy and compensss tion	Elever tion in feet	Topography	Com pensathon	Topography nind com-pensation
	Crookston, Minn., No. 101				Poplar, Mont., No. 192				Miles City, Mont., No. 193				Funtley, Mont., No. 194			
$\begin{aligned} & \mathbf{A} \\ & \mathbf{B} \\ & \mathbf{C} \\ & \mathbf{D} \\ & \mathbf{B} \end{aligned}$	$\begin{aligned} & 854 \\ & 854 \\ & 851 \\ & 850 \\ & 850 \end{aligned}$	$\begin{aligned} & +2 \\ & +62 \\ & +92 \\ & +69 \\ & +30 \end{aligned}$	0 0 0 0 -2	$\begin{aligned} & +2 \\ & +62 \\ & +92 \\ & +69 \\ & +28 \end{aligned}$	$\begin{aligned} & 1996 \\ & 2000 \\ & 1902 \\ & 1973 \\ & 1972 \end{aligned}$	$\begin{aligned} & +2 \\ & +68 \\ & +138 \\ & +132 \\ & +136 \end{aligned}$	0 0 $-\quad 0$ $-\quad 4$	+2 $+\quad 68$ +138 +180 +132	$\begin{aligned} & 234 \\ & 2355 \\ & 2355 \\ & 2357 \\ & 2375 \end{aligned}$	$\begin{aligned} & +2 \\ & +68 \\ & +142 \\ & +207 \\ & +169 \end{aligned}$	$\begin{array}{r}1 \\ 0 \\ 0 \\ -\quad 0 \\ \hline\end{array}$	$\begin{aligned} & +2 \\ & +68 \\ & +142 \\ & +207 \\ & +164 \end{aligned}$	$\begin{aligned} & 3016 \\ & \text { \#17 } \\ & 3019 \\ & 3018 \\ & 2961 \end{aligned}$	$\begin{aligned} & +\quad 2 \\ & +67 \\ & +154 \\ & +243 \\ & +232 \end{aligned}$	0 0 $-\quad 3$ -88	$\begin{aligned} & \pm{ }^{2} \\ & \pm \\ & +154 \\ & +240 \\ & +224 \end{aligned}$
$\begin{aligned} & \text { F } \\ & \text { G } \\ & \text { II } \\ & 3 \end{aligned}$	$\begin{aligned} & 850 \\ & 800 \\ & 850 \\ & 800 \\ & 888 \end{aligned}$	+12 +6 +4 +8 +1	$=2$ $=8$ $=4$ $=8$	$\begin{array}{r} +10 \\ +\quad 3 \\ 0 \\ 0 \\ -8 \end{array}$	$\begin{aligned} & 1908 \\ & 1978 \\ & 1985 \\ & 2019 \\ & 2074 \end{aligned}$	+66 +81 +16 +80 $+\quad 8$	\% $=$ $=$ $=$ $=20$ -22	$\begin{aligned} & +60 \\ & +\quad 24 \\ & +\quad 6 \\ & -16 \end{aligned}$	$\begin{aligned} & 2400 \\ & 2800 \\ & 2700 \\ & 2800 \\ & 2800 \end{aligned}$	+84 $+\quad 43$ +30 $+\quad 12$ $+\quad 8$	$=7$ $=12$ $=18$ $=29$	$\begin{aligned} & +77 \\ & \pm 31 \\ & +14 \\ & \pm 80 \\ & -80 \end{aligned}$	$\begin{aligned} & 2990 \\ & 3029 \\ & 3075 \\ & 3120 \\ & 3200 \end{aligned}$	$\begin{aligned} & +132 \\ & +\quad 72 \\ & +46 \\ & +\quad 24 \\ & +\quad 15 \end{aligned}$	10 $=10$ $=12$ $=27$ -33	$\begin{array}{r} +122 \\ +\quad 60 \\ +30 \\ -\quad 3 \\ -18 \end{array}$
$\begin{aligned} & K \\ & L \\ & M \\ & M \\ & N \end{aligned}$	825 925 950 1056 1229	0 0 0 0	-14 -23 -56 -53 -69	-14 -23 -56 -53 -69	7160 22204 2221 2400 2529	a $+\quad 6$ $+\quad 5$ 0 0	-32 $=53$ -124 -120 -117	-28 -18 -124 $=120$ -117	2825 2879 3021 31.56 3257	+6 $+\quad 6$ $+\quad 9$ 0 0	-46 $=70$ $=180$ -162 -156	-40 $=61$ $=171$ -162 -158	3355 3559 3669 3664 3750 4575	P $+\quad 8$ +10 +10 0	-47 $=85$ $=218$ -192 -219	$\begin{aligned} & -39 \\ & =75 \\ & =208 \\ & -192 \\ & -219 \end{aligned}$
$\begin{aligned} & 18 \\ & 17 \\ & 16 \\ & 15 \\ & 14 \end{aligned}$				-12 -12 -13 -18 -14				-28 $=26$ $=28$ -88 -88				$\begin{aligned} & -31 \\ & =31 \\ & =34 \\ & =36 \\ & =37 \end{aligned}$				$\begin{aligned} & =48 \\ & =49 \\ & =49 \\ & =44 \end{aligned}$
$\begin{array}{r} 13 \\ 12 \\ 11 \\ 10 \\ 9 \end{array}$				-85 -16 $=14$ -14				-57 $=85$ $=28$ $=80$ -18				- 64 $=38$ $=81$ $=80$	\ldots			$\begin{aligned} & -78 \\ & =48 \\ & =38 \\ & =18 \end{aligned}$
$\begin{aligned} & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \end{aligned}$				-4 +10 +10 +7				+18 $+\quad 1$ $+\quad 5$ $+\quad 8$ $+\quad 7$				P $+\quad 3$ $+\quad 5$ $+\quad 8$ $+\quad 7$				$\begin{aligned} & \pm 4 \\ & \pm 8 \\ & +8 \\ & +\quad 9 \end{aligned}$
$\begin{aligned} & 3 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$				$\begin{aligned} & +5 \\ & +4 \end{aligned}$				$\begin{aligned} & \pm 3 \\ & \pm 1 \\ & +1 \end{aligned}$				$\begin{aligned} & +5 \\ & +4 \\ & +1 \end{aligned}$				+4 $+\quad 3$ +1
Total				-62				-87				-204				-222
	Lander, Wyo., No. 195				Fari'rault, Minn., No. 196				St. James, Minn., No. 197				Edgemont, B. Dak., No. 198			
$\begin{aligned} & \text { A } \\ & \mathbf{B} \\ & \mathbf{C} \\ & \mathbf{D} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & 5365 \\ & 5370 \\ & 5370 \\ & 5372 \\ & 5376 \end{aligned}$	$\begin{aligned} & +2 \\ & +67 \\ & +164 \\ & +306 \\ & +391 \end{aligned}$	0 0 $-\quad 4$ -8	$+\quad 2$ +87 +160 +300 +383	$\begin{array}{r} 989 \\ 989 \\ 1000 \\ 9 \times 8 \\ 1000 \end{array}$	$+\quad 2$ +64 +103 +84 +42	$\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ -\quad 3 \end{array}$	+8 $+\quad 64$ +103 +84 +89	$\begin{aligned} & 1083 \\ & 1083 \\ & 1080 \\ & 1072 \\ & 1075 \end{aligned}$	$+\quad 2$ +64 +108 +85 +49	0 0 0 0 $-\quad 2$	$\begin{aligned} & +2 \\ & +64 \\ & +108 \\ & +95 \\ & +47 \end{aligned}$	$\begin{aligned} & 3499 \\ & 3495 \\ & 3472 \\ & 3475 \\ & 3481 \end{aligned}$	$\begin{aligned} & +2 \\ & +66 \\ & +157 \\ & +256 \\ & +273 \end{aligned}$	0 $-\quad 0$ $=\quad 1$ -8	$+\quad 2$ +66 +156 +251 +285
$\begin{gathered} \mathrm{F} \\ \mathrm{G} \\ \mathrm{H} \\ \mathrm{I} \\ \mathrm{~J} \end{gathered}$	$\begin{aligned} & 5400 \\ & 5383 \\ & 5569 \\ & 5915 \\ & 6125 \end{aligned}$	$\begin{array}{r} +308 \\ +189 \\ +137 \\ +\quad 97 \\ +\quad 58 \end{array}$	$=20$ $=24$ $=32$ $=43$ -86	+288 +165 +105 +54 +88	1025 1066 1062 1025 1103	+18 $+\quad 7$ $+\quad 4$ $+\quad 8$	- 3 $=\quad 4$ $=9$ $=11$	+15 $+\quad 3$ $\pm \quad 1$ $=\quad 1$	1082 1079 1069 1048 1100	+23 $+\quad 9$ $+\quad 1$ $+\quad 9$ $+\quad 1$	$=8$ $=1$ $=8$ $=11$	$\begin{array}{r} +20 \\ +\quad 5 \\ 0 \\ 0 \\ -10 \end{array}$	$\begin{aligned} & 3504 \\ & 3543 \\ & 3578 \\ & 3640 \\ & 3725 \end{aligned}$	$\begin{aligned} & +166 \\ & +82 \\ & +46 \\ & +45 \\ & +22 \end{aligned}$	10 $=10$ $=12$ $=16$ -40	$\begin{aligned} & +156 \\ & +70 \\ & +30 \\ & +18 \\ & +18 \end{aligned}$
$\begin{aligned} & \mathrm{K} \\ & \mathrm{~L} \\ & \mathrm{M} \\ & \mathrm{~N} \\ & \mathrm{O} \end{aligned}$	6470 6877 7279 7398 7096	+47 $+\quad 28$ $+\quad 15$ $+\quad 8$ 0	-109 -158 -425 -373 -341	- 62 -136 -110 -365 -341	1112 1096 1079 1050 1021	0 0 0 0 0	- 18 $-\quad 26$ $=59$ -53	-18 $=28$ $=59$ $=56$	$\begin{aligned} & 1115 \\ & 1129 \\ & 1086 \\ & 1156 \\ & 1225 \end{aligned}$	0 0 0 0 0	- 16 $=27$ $=60$ $=57$	$\begin{aligned} & =16 \\ & =27 \\ & =60 \\ & =57 \\ & =81 \end{aligned}$	$\begin{aligned} & 3820 \\ & 3838 \\ & 4100 \\ & 4288 \\ & 4150 \end{aligned}$	+15 +18 +14 $+\quad 5$ +6	-60 $=94$ $=245$ -225 -208	$\begin{aligned} & =45 \\ & =76 \\ & -231 \\ & -2200 \\ & -202 \end{aligned}$
18				- 68				- 11				- 12				
17				-68				- 11			- 12				- 41
16				-71 -66				- 12				- 12				- 41
14				-61				- 13				- 14				
$\begin{gathered} 13 \\ 12 \\ 11 \\ 10 \\ 9 \end{gathered}$				$\begin{array}{r} -88 \\ -51 \\ =87 \\ -\quad 17 \\ 0 \end{array}$				$\begin{aligned} & =21 \\ & =16 \\ & =11 \\ & =\quad 5 \end{aligned}$				$\begin{aligned} & =89 \\ & =15 \\ & =15 \\ & =11 \end{aligned}$				$\begin{aligned} & =69 \\ & =40 \\ & =31 \\ & =80 \end{aligned}$
$\begin{aligned} & 8 \\ & 7 \\ & 15 \\ & 5 \\ & 4 \end{aligned}$			$\begin{aligned} & +8 \\ & +\quad 7 \\ & +\quad 9 \\ & +8 \end{aligned}$				$\begin{array}{r} 0 \\ +\quad 8 \\ +\quad 8 \\ +\quad 0 \end{array}$	$\mid \cdots$			$\begin{aligned} & \pm \\ & +6 \\ & +8 \\ & +10 \\ & +\quad 6 \end{aligned}$				$\begin{aligned} & +3 \\ & +6 \\ & +8 \\ & +\quad 7 \end{aligned}$
$\begin{aligned} & 3 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$				$\begin{aligned} & +8 \\ & +3 \\ & +1 \end{aligned}$				+1 +1				$\begin{aligned} & \pm 1 \\ & +1 \end{aligned}$				+4 $+\quad 3$ +1
Total.				-275				$+4$				+ 19				-115

Mean elevations and corrections for topography and isostatic compensation，separate zones，for United States stulions－Contd．

Zone	Eleva－ thon in foot	Topog－ raphy	Com－ pensar tion	Topog－ raphy and com－ penser tion	Eleva tion in feet	Topog－ raphy	Com－ pensa－ tion	Topog－ rephy and com－ pensia tion	Eleva－ thon in feet	Topog． raphy	Com－ pensar tion	$\begin{array}{\|c} \text { Topog } \\ \text { raphy } \\ \text { and } \\ \text { com- } \\ \text { pensa- } \\ \text { tion } \end{array}$	$\begin{aligned} & \text { Elevar } \\ & \text { tion in } \\ & \text { feet } \end{aligned}$	Topog－ raphy	Com－ pensa－ tion	Topog－ raphy and pens\％－ tion
	Dawson，Minn．，No． 199				Cokato，Minn．，No． 200				Wasta，S．Dak．，No． 201				Moorcroft，Wyo．，No． 202			
A	1059	＋ 2	0	＋ 2	1059	＋ 2	0	＋ 2	2317	＋ 2	0	＋ 2	4249	＋ 2	0	＋ 2
閏	1060	＋64	0	＋ 64	1060	＋ 64	0	＋64	2320	＋68	0	＋68	4250	＋ 68		$+68$
$\frac{\mathrm{C}}{\mathrm{C}}$	1052	＋108	0	＋106	1052	＋106	0	＋106		＋144		＋144	4239	＋162	-2	＋160
D	1058	＋93	0	+93 $+\quad 45$	1058	＋90	－ 0	＋90	2320	＋198		＋198	4236	＋282	-6	＋276
	1050	＋47	－2	$+45$	1044			$+40$	2355			$+160$			-8	＋814
F	1058	＋23	－3	＋ 20	1048	＋ 23	-3	＋ 20	2400	＋ 88	-6	＋82	4300	＋222	－ 10	＋212
9	1076	a +9	－ 4	＋ 5	1048	＋ 9	－4	$+\quad 5$	2400	＋ 42	－ 8	＋34	4300	＋120	－ 12	＋108
H	1081	＋ 6	－ 5	＋ 1	1053	＋ 5	－5	0	2400	＋ 21	－ 11	＋ 10	4340	＋72	－16	＋56
${ }_{\text {J }}$	1094 1097	a	－9	［ 0	1048	a	－9	－88	2500 2500	＋ +18 $+\quad 7$	－ 20 -24	－ -17	4300 4300	+70 $+\quad 40$ +	－ 40	+30 +8
	1102	0	－18	－ 18	1040	＋ 2	－16	－ 14	2500		-40	－ 35	4320	＋ 21	－62	
\underline{L}	1129	0	－27	-27	1042	＋ 0	－24	－ 24	2640	＋6	－ 62	-56 -50	4521	+21 +20	－107	＝ 81
M	1380	0	－66	－66	1038		－57	－ 57	25×6	0	－151	－151	4657	＋ 19	－272	－253
N	1331	0	－65	－65	1044	－	－53	－ 53	2862	＋ 2	－149	－147	4588	＋ 5	－240	－235
0	IT30	0	－71	－ 71	1121	0	－56	－ 58	3082		－156	－156	4321		－214	－214
18				－ 13				－ 12				－ 31				－ 44
17				$=12$				－ 12				－32	．．．．．．		．．．．．．	－ 44
16				－ 13				-13 -18				－32				－ 41
14				－ 16				－ 14				－ 38	．．．．．．			二 45
13				－ 87				－ 28				－$\overline{\boldsymbol{\sigma} 5}$				
12				－ 18				－ 15				－ 38				－ 38
110				－ 16 -18				－ 18				－ 88				－ 81
9				－ 7				－ 11				－ 18				－ 19
				－ 8												
7				＋ 6				＋ 6				＋ 8				+8 +68
5				$+8$				＋ 9				＋ 9				＋ 9
5				$+10$				$+10$				$+10$				＋ 10
												＋				＋ 7
3												＋				
1				＋1				＋ 1				＋ 1				
Total．				－32				$+28$				－130				$+50$
	Dulath，Minn．，No． 203				Osage，Iowa，No． 204				Randolph，Nebr．，No． 205				Valentine，Nebr．，No． 206			
	708	＋2	0	＋ 2	1167	＋ 2		$+3$	1689				2576			$+2$
B	705	＋60	0	$+60$	1170	＋ 6	0	＋ 64	1684	＋ 68	0	＋ 68	2576	＋ 68	0	＋ 68
C		＋80	0	＋ 80	1170	＋112	0	＋112	1688	＋132	0	＋132	2576	＋148		＋148
D	752	＋46	0	＋ 46	1200	＋102	0	＋102	1659	＋158	－2	＋156	2576	＋219	-3	＋216
IT	808	＋22	－2	＋20	1208	＋ 56	-3	＋ 53	1700	＋107	－4	＋103	2575	＋191	－ 5	＋186
	885	＋12	－2	＋ 10	1200	＋23	-1	＋ 19	1700	＋ 50	－ 5	＋ 45	2580	＋100	－ 8	＋98
0	871			＋ 1		＋11	－ 4		1700	＋ 18		＋12	509		－ 12	＋ 36
H	900	＋2	－ 5	－ 3	1200	＋ 7	－6	＋ 1	1700	＋ 10	－8	＋ 2	2800	＋ 32	－ 12	＋20
$\frac{1}{5}$	932	+5 +1	－8	－ 3	11150	＋11	-11 -11	0 -10	1700 1631	＋ 12	-12 -16	－ 0	963	+23 $+\quad 23$ +1	-23 -28	－ 0
	07		－11	－ 10				－ 10	1631		－16		20ss			
	965	＋1	－15	-14	1130	＋ 1	－18	－17	1620		－25	-21	2885		－ 44	-33
\underline{L}	1071	0	－25	－ 25	1142	＋ 3	－27	－ 24	1617	＋ 2	－39	－ 37	2762	＋ 6	－66	－60
	1093		－ 15	－65	1129	0	－64	－64	1514	＋ 2	－88	－86	2721	＋ 5	-157	－152
N	n128	E	－59	－ 59	1056		-52	－ 52	1512		－79	－ 79	\％${ }^{2}$	＋ 5	－139	－134
0	［180\％	0	－67	－ 67	968	0	－56	－ 56	1539		－80	－ 86	2496	＋ 3	－125	－122
				－ 11				－ 10				－ 16				
17				－ 11				－ 10				－17				－ 25
16				－ 11				－ 10				－ 17				－25
15				－ 18				－ 11				－ 20				－ 28
14				－ 11				－ 18				－ 21				－ 88
［8				－ 18				－ 20				－ 56				－ 49
18				－ 13				－ 14				－ 82				二89
11				－ 11				－ 11				－ 80				－
10				－ 10				－ 8				－ 14				-17
9				－				－								$\rightarrow 6$
												0				
7				＋ 6				＋ 8				＋ 7				＋ 8
5				＋ 8				＋ 9				＋ 2				＋ 8
4				+8 +8				+80 +8				+10 $+\quad 7$				＋11
2								$+4$				$+4$				＋
1				$+1$				$+1$				＋ 1				＋ 1
Total．．				－103				＋69				＋ 53				$+40$

Mean elevations and corrections for topography and fsostatic compensation, separate zones, for United States stations-Contd.

Zosen	Eleva- tion in	${ }^{\text {Toppog. }}$	$\begin{aligned} & \text { Com- } \\ & \text { pensa } \\ & \text { tion } \end{aligned}$	Topog raphy and pensen tion	$\begin{gathered} \text { Elevar } \\ \text { tlon in } \\ \text { foet } \end{gathered}$	Topog-	$\begin{aligned} & \text { Comb } \\ & \text { pensen } \\ & \text { tion } \end{aligned}$	$\begin{array}{\|l\|l} \text { Topog- } \\ \text { raphy } \\ \text { and } \\ \text { com- } \\ \text { ponsan } \\ \text { tion } \end{array}$	$\begin{gathered} \text { Elevg- } \\ t \text { tion in } \\ \text { feet } \end{gathered}$	Topog- raphy	$\begin{aligned} & \text { Com- } \\ & \text { pensen } \\ & \text { tion } \end{aligned}$	$\begin{gathered} \text { Topog- } \\ \text { raphy } \\ \text { and } \\ \text { com- } \\ \text { pensen- } \\ \text { titon } \end{gathered}$	Elevar tlon in feet	Topogo	$\begin{aligned} & \text { Com- } \\ & \text { pensen } \\ & \text { tion } \end{aligned}$	Topog raphy comi pensetion
	Wheeling, W. Va, No. 207				Loon, Iowa, No. 208				Laurel, Md., No. 209				Harrisburg, Pa., No. 210			
$\begin{aligned} & \text { A } \\ & \text { d } \\ & \text { D } \\ & \hline \text { E } \end{aligned}$	$\begin{aligned} & 674 \\ & 676 \\ & 676 \\ & 662 \\ & 690 \end{aligned}$	$\begin{aligned} & +{ }^{2} \\ & +99 \\ & ++78 \\ & +18 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & +2 \\ & +59 \\ & +78 \\ & +48 \\ & +18 \end{aligned}$	$\begin{aligned} & 1127 \\ & 1130 \\ & 1114 \\ & 1067 \\ & \hline 100 \end{aligned}$	$\begin{aligned} & +2 \\ & +08 \\ & +108 \\ & +86 \\ & +56 \end{aligned}$	0 0 0 0 -2	$\begin{aligned} & \pm 2 \\ & \pm 68 \\ & +108 \\ & +86 \\ & +54 \end{aligned}$	$\begin{aligned} & 176 \\ & 180 \\ & 168 \\ & 162 \\ & 173 \end{aligned}$	$\begin{aligned} & +2 \\ & +36 \\ & +16 \\ & +3 \\ & +1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & +2 \\ & +36 \\ & +16 \\ & +3 \\ & +1 \end{aligned}$	$\begin{aligned} & 340 \\ & 44 \\ & 344 \\ & 347 \\ & 318 \end{aligned}$	$\begin{aligned} & +2 \\ & +52 \\ & +38 \\ & +13 \\ & +9 \end{aligned}$	0 0 0 0 0	+2 +528 +13 +9
$\begin{gathered} \mathrm{F} \\ \text { O} \\ \frac{\mathrm{H}}{\mathrm{I}} \end{gathered}$	808 8873 9788 1002 1059	+8 +9 +3 +3 +2 +1	-2 $=8$ -5 -12 -12	+7 +2 +2 -7 -11	1100 11100 1100 1100 1100	+ + +9 +8 +8 $+\quad 2$	-3 -4 -8 -9 -11	+21 $+\quad 5$ ± 3 $+\quad 3$ -8	00 ma 251 261 261 262	$\begin{array}{r} +1 \\ +0 \\ 0 \\ 0 \\ 0 \end{array}$	-1 $=1$ $=1$ $=-3$	$\begin{aligned} & \\ &= \\ &= 1 \\ &-1 \\ &=2 \\ &-3\end{aligned}$	$\begin{aligned} & 833 \\ & 389 \\ & 389 \\ & 472 \\ & 542 \end{aligned}$	$\begin{array}{r} +1 \\ +1 \\ +1 \\ +1 \\ 0 \end{array}$	$=1$ $=\frac{1}{2}$ $=2$ $=6$	0 0 -1 -4 -6
$\begin{aligned} & \frac{K}{L} \\ & \frac{M}{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 1070 \\ & 112 \\ & 1100 \\ & 1013 \\ & 1196 \end{aligned}$	+1 +1 +2 +2 +2 0	-17 -27 -65 -51 -60	-16 -25 -683 -651 -60	1100 108 105 105 1012 943	r $+\quad 2$ $+\quad 2$ $+\quad 1$ 0 0	-18 -28 -588 -58 -50	-16 $=24$ $=57$ $=52$ -50	270 285 186 262 413 413	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	-4 -6 -11 -13 -21	-4 -6 -11 -13 -21	$\begin{aligned} & \text { S22 } \\ & \hline 08 \\ & \hline 686 \\ & 762 \\ & 759 \\ & 759 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	-9 -14 -39 -38 -38	-9 -14 -39 -38 -38 -38
18				-13				- 9				- 7				
17				-13 -13				-9								-10
15				-13				- 9				-8				- ${ }^{8}$
14				-10				- 11				-4				- 4
13				-13				- 80				+ 5				
12				- ${ }^{8}$				- 19				+14				+11
10			+				- 18				+18				
9				+ 7				- ${ }^{18}$				+10				+
6				+ 6				+88				+88				8
5				+8				+ 11				+ 7				+
				+ 7								+ 6				
${ }_{1}^{2}$				+3 +1				+3 +1			± 1				+
Total.				-34				+ 73				+73				$+24$
	Pittsburg, Pa., No. 211				Rookville, Md., No. 212				Upper Marlboro, Md., No. 213				Fairlax, Va., No. 214			
$\begin{aligned} & A \\ & \frac{A}{d} \\ & C \\ & D \\ & \hline \end{aligned}$	$\begin{aligned} & 772 \\ & 772 \\ & 778 \\ & 777 \end{aligned}$	$\begin{aligned} & +2 \\ & +60 \\ & +87 \\ & +81 \\ & +68 \\ & +26 \end{aligned}$		+2 +60 +87 +80 +24 +60	$\begin{aligned} & 422 \\ & 414 \\ & 429 \\ & 425 \\ & 418 \end{aligned}$	+2 +56 +50 +22 +8	0 0 0 0 0 0	$\begin{aligned} & +2 \\ & \pm 56 \\ & +50 \\ & +\quad 52 \\ & +\quad 8 \end{aligned}$	$\begin{aligned} & 38 \\ & 40 \\ & 35 \\ & 32 \\ & 69 \end{aligned}$	$\begin{array}{r} +2 \\ +12 \\ +1 \\ +\quad 1 \\ 0 \\ 0 \end{array}$	0 0 0 0 0 0	$\begin{array}{r} +2 \\ +12 \\ +1 \\ +1 \\ 0 \\ \end{array}$	$\begin{aligned} & 378 \\ & 378 \\ & 375 \\ & 3661 \\ & 359 \end{aligned}$	$\begin{aligned} & +2 \\ & +53 \\ & +40 \\ & +16 \\ & +10 \end{aligned}$	rer $\begin{array}{r}0 \\ 0 \\ 0 \\ -1 \\ \hline 1\end{array}$	$\begin{aligned} & +{ }^{2} \\ & +53 \\ & +40 \\ & +16 \\ & +\quad 18 \end{aligned}$
$\begin{gathered} \frac{\mathrm{T}}{\mathrm{a}} \\ \frac{H}{\frac{1}{2}} \end{gathered}$		+13 $+\frac{4}{4}$ +4 +4 +2	-3 $=3$ $=5$ -88 -11	+10 ± 1 ± 1 -8	$\begin{aligned} & 401 \\ & 381 \\ & 385 \\ & 372 \\ & 3656 \end{aligned}$	+8 +3 +1 +1 0	-1 $=1$ $=2$ $=3$ -4	+2 $+\quad 0$ $-\quad 13$ $-\quad 4$	90 14 100 101 124 124	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r}0 \\ 0 \\ -1 \\ =1 \\ -1 \\ \hline\end{array}$	0 -1 -1 -1	$\begin{aligned} & 352 \\ & 358 \\ & 345 \\ & 302 \\ & 275 \end{aligned}$	+2 +1 +1 0 0	$=1$ $=1$ $=2$ $=-3$	+1 $=1$ $=1$ $-\quad 3$
$\begin{aligned} & \frac{K}{L} \\ & M \\ & \text { N } \end{aligned}$	$\begin{aligned} & \begin{array}{l} 1050 \\ 1075 \\ 986 \\ 1280 \\ 12236 \end{array} \end{aligned}$	$+\frac{1}{0}$	-17 -26 -58 -61 -62	-16 -26 -25 -68 -62	$\begin{aligned} & 368 \\ & 360 \\ & 346 \\ & 342 \\ & 342 \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	- $=9$ -14 -14 -17 -25	$\begin{array}{r} \\ = \\ = \\ = \\ \hline\end{array}$	$\begin{array}{r} 140 \\ 90 \\ 61 \\ 157 \\ 310 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-2 $=2$ -3 $=8$ -16	-2 -2 -3 -8 -16	$\begin{aligned} & 262 \\ & 220 \\ & 278 \\ & 270 \\ & \\ & \hline 00 \end{aligned}$	0 0 0 0 0	-4 -16 -16 -19 -28	$=4$ $-\quad 5$ $=16$ $=26$
17				-12				=				= 7				-8
15				-10								-8				- 8
14				- 9				-4				-1				
				-11												
12				- 1				+ 12				+16	…...		+18
10				+ 8				+17				+17				+17
				+ 7				+ 11				+11				+ 17
				+ 8												
7				+ ${ }^{5}$				+ ${ }_{+}^{8}$				+6				${ }^{6}$
6				+88				+ ${ }_{+}$				+				+ ${ }^{6}$
1				$+8$				+				$+6$				\pm
3				+ 6								+				
${ }_{1}^{2}$				+				± 4				+				
Total..			+ 5				+133				+71				+14

Mean elevations and corrections for topography and isostatic compensation, separate zones, for United States stations-Contd.

Zone	EleVar tion in feet	To-pog-raphy	Com- pen-sation	Topography and com-pensation	Elo va- tion in feet	To pog-r8phy	Com panS8= tion	Topography and com-pensation	Ele 78tion in feat	To-pog-rgphy	Com-pen-sation	Topography and com-pensation	Ele F8tion in feet	To pog70 phy	Com-pen-s8tion	Topog- raphy and [0. pensstion	Ele-78tion in feet	Topog. raphy	Com- pen-88tion	Topog* raphy and com-pensation
	Crisfield, Md., No. 215				Fredarickaburg, Va., No.				Dover, Del., No. 217				North Tamarack, Mich.,No. 218				Hagerstown, Md., No. 219			
A	4	+1	0	+1	52	$+2$	0	$+2$	38	$+2$	0	$+2$	1215	+ 2	0	+ 2	544	$+2$	0	$+2$
苜	6	0	0	+ II	60	+15	0	+15	42	$+10$	0	$+10$	1215	+64	0	+64	551	+56	0	$+56$
C	4		0		54	$+2$	0	+2	40	+1		+1	1212	+114	0	+114	556	$+64$		+64
D	1	0	0		47	0	0	0	88	0	0		1212	$+111$	- 1	+110	559	$+36$	-1	$+35$
E	4	0	0	0	47	0	0	0	30	0	0	0	1207	$+60$	-3	+ 57	559	$+17$	-1	$+16$
F	2	0	0	0	62	0	0	0	31	睪	0	0	1198	$+24$	- 4	$+20$	556	$+4$	-2	$+2$
G	1	0	0	0	98	0	0	0	32	0	0	0	1148	+ 8	- 4	+ 4	580	+2	-2	0
H	1	0	0	0	138	0	-1	-1	28	0	0	0	1034	+ 8	-5	+3	556	+1	-3	-2
I	-4	0	0	0	154	0	- 1	-1	29	0	0	0	825	+ 7	-7	+ 0	547	$+1$	-5	-4
J	-3	0	0	0	169	0	-2	-2	28	-	0	0	743	+ 1	-8	-7	553	0	-6	-6
K	- 2	0	0	0	168	0	-3	- 3	27	0	- 1	- 1	659	0	-11	- 11	692	0	-11	-11
L	-1	0	1	0	181	0	-4	- 4	28	0	- 1	- 1	681	0	-15	- 15	771	0	-18	-18
\mathbf{M}	-3	0	0	0	152	0	-9	-9	27	0	-1	- 1	508	0	-30	- 30	807	0	- 87	-47
N	-6	0	0	0	29	0	-15	-15	8	0	-12	-12	572	0	-30	- 30	769	0	- 40	-40
0	-28	0	$+1$	+ 1	470	0	-24	-24	92	0	-5	- 5	D01	0	-30	- 30	923	0	-46	-46
19				$+4$				-5				- 2				- 8				-10
17				+ 5				- 7				-2				-10				-9
16				+ 8				- 7				$+1$				- 10				-9
15				+ 10				-7				+ 3				- 8				- 7
14				+12				-4				+ 6				- 9				-5
13				+25				$+4$				$+13$				-16				-1
12				+ 25				$+14$				$+16$				- 18				$+8$
11				+				$+17$				+ 19				- 8				+14
10				$+18$				+18				+18				- 5				$+16$
8				$+15$				+18				+ 12				-2				+10
8				$+14$				+12				$+14$				+ 3				$+11$
7				$+5$				$+5$				+ 6				+ 6				+ 6
6				$+6$				$+6$				+ 6				+ 8				$+6$
5				$+7$				$+8$				$+6$				+ 8				$+7$
4				$+7$				$+7$				+ 6				+ 5				+ 6
3				$+6$				$+6$				$+6$				+ 4				$+6$
2				$+5$				$+5$				$+1$				$+4$				$+4$
1				$+1$				$+1$				$+1$				+ 1				+1
Total				$+192$				$+13$				$+128$				+201				+55

MEAN ELEVATIONS AND CORRECTIONS FOR TOPOGRAPHY AND ISOSTATIC COMPENSATION FOR SEPARATE ZONES AT SELECTED STATIONS IN EUROPE.

No doubt the Geodetic Survey of Canada will publish the data for the separate zones at stations in that country. The publication of the "Survey of India" a does not give the effect of topography and compensation for the separate zones in India.

For the purpose of testing the gravity height formula (see pp. 93 to 96) a number of European stations were reduced for topography and compensation by the Hayford method. The depth of compensation used was 113.7 km ., the one on which the reduction tables in Special Publication No. 10 are based.

It is believed that the elevations of the topography and the corrections for the separate zones as given in the following table are of sufficient interest and value for the purposes of further investigations to warrant their publication here. As in the preceding table the corrections given in the following table are in units of the fourth decimal place in dynes. Figures printed in italics represent values interpolated from surrounding stations according to methods explained in Special Publication No. 10, pages 58 to 65, or represent values found to be identical with those for a station very close by.

[^2]Mean elovations and corrections for topography and isostatic compersation, separate zones, for selected stations in Europe.

2000	Elevar tion in foet	Topogrephy	Com-pensation	$\begin{gathered} \text { Topog- } \\ \text { raphy } \\ \text { and } \\ \text { com- } \\ \text { penss. } \\ \text { tion } \end{gathered}$	$\begin{aligned} & \text { Eleva- } \\ & \text { tion in } \\ & \text { feet } \end{aligned}$	Topography	$\begin{aligned} & \text { Com- } \\ & \text { pensa- } \\ & \text { tion } \end{aligned}$	$\begin{gathered} \text { Topog } \\ \text { raphy } \\ \text { and } \\ \text { com- } \\ \text { pensa- } \\ \text { tion } \end{gathered}$	Elevetlon in feet	Topograply	Compenca tion	$\begin{aligned} & \text { Topog- } \\ & \text { raphy } \\ & \text { and } \\ & \text { com- } \\ & \text { pensen } \\ & \text { tion } \end{aligned}$	Eleve tion in foet	Topog. raphy	Compenss tion	$\begin{gathered} \text { Topog- } \\ \text { raphy } \\ \text { anid } \\ \text { com- } \\ \text { penss } \\ \text { tion } \end{gathered}$
	Stillserjoch, Austria (Stelvio Pass), No. 1				Franzonhǒhe, Austria, No. 2				Schneekoppe, Germany, No. 3				Alter Bruch, Germany, No. 1			
$\begin{gathered} \mathbf{A} \\ \mathbf{B} \\ \mathbf{C} \\ \mathbf{D} \\ \mathbf{E} \end{gathered}$	$\begin{aligned} & 8055 \\ & 9050 \\ & 9040 \\ & 9191 \\ & 8845 \end{aligned}$	$\begin{aligned} & +2 \\ & +70 \\ & +164 \\ & +342 \\ & +509 \end{aligned}$	0 $=$ $=8$ $=12$	$\begin{aligned} & +2 \\ & +66 \\ & +156 \\ & +330 \\ & +483 \end{aligned}$	$\begin{aligned} & 7178 \\ & 71: 0 \\ & 7180 \\ & 7440 \\ & 7500 \end{aligned}$	$\begin{aligned} & +2 \\ & +63 \\ & +164 \\ & +313 \\ & +450 \end{aligned}$	0 $-\quad 4$ $=\quad 6$ -16	$\begin{aligned} & +2 \\ & +68 \\ & +160 \\ & +307 \\ & +434 \end{aligned}$	$\begin{aligned} & 5266 \\ & 5250 \\ & 5110 \\ & 4700 \\ & 4190 \end{aligned}$	$+\quad 2$ +62 +145 +282 +333	0 $-\quad 0$ $=\quad 6$ $-\quad 8$	$\begin{aligned} & +\quad 2 \\ & +62 \\ & +141 \\ & +256 \\ & +325 \end{aligned}$	$\begin{aligned} & 3010 \\ & 3000 \\ & 2950 \\ & 2990 \\ & 2950 \end{aligned}$	$\begin{aligned} & +2 \\ & +62 \\ & +148 \\ & +231 \\ & +226 \end{aligned}$	0 0 0 0 -8	$\begin{aligned} & +2 \\ & +62 \\ & +148 \\ & +231 \\ & +218 \end{aligned}$
$\begin{aligned} & \text { F } \\ & \text { G } \\ & \text { H } \\ & \frac{I}{J} \end{aligned}$	$\begin{aligned} & 8990 \\ & 8500 \\ & 8210 \\ & 7430 \\ & 7140 \end{aligned}$	+509 +509 +369 +298 +251 +140	- 28 $=30$ $=42$ -86 -74	+481 +339 +254 +185 +66	$\begin{aligned} & 8140 \\ & 84 \cdot 10 \\ & 8750 \\ & 7840 \\ & 7440 \end{aligned}$	+373 +259 +190 +164 +90	-26 $=31$ $=35$ $=79$	$\begin{aligned} & +347 \\ & +228 \\ & +145 \\ & +\quad 93 \\ & +11 \end{aligned}$	$\begin{aligned} & 4050 \\ & 3650 \\ & 3400 \\ & 2910 \\ & 2300 \end{aligned}$	+236 +150 +98 +80 +35	-10 -12 $=16$ $=28$ -22	+256 +138 +82 +52 +13	$\begin{aligned} & 3140 \\ & 3440 \\ & 3190 \\ & 2540 \\ & 2350 \end{aligned}$	+128 +61 +28 +35 +20	-10 -12 -16 -22 -24	$\begin{aligned} & +116 \\ & +19 \\ & +12 \\ & +\quad 13 \\ & -\quad 4 \end{aligned}$
K L M N O	$\begin{aligned} & 7280 \\ & 7300 \\ & 6990 \\ & 4220 \\ & 2880 \end{aligned}$	+115 +77 +60 +23 0	-121 $=174$ -339 -222 -140	-88 -100 $=279$ -109 -140	7130 72030 5990 42200 2880	$\begin{array}{r}+77 \\ +\quad 52 \\ +\quad 45 \\ +\quad 23 \\ \hline 11\end{array}$	-118 -172 -343 -223 -140	-41 -120 -298 -200 -140	2070 1800 1150 804 880 880	+16 +11 +11 0	- 20 $=38$ $=63$ $=51$	$=1$ $=27$ $=49$ $=81$	11700 1700 1130 860 900	$+\quad 0$ $+\quad 0$ +13 0 0	-21 -34 -65 -45 -51	$\begin{aligned} & -12 \\ & =34 \\ & =52 \\ & =85 \\ & -81 \end{aligned}$
$\begin{aligned} & 18 \\ & 17 \\ & 10 \\ & 15 \\ & 14 \end{aligned}$				- 27 - 28 $=28$ $=28$				-87 $=26$ $=28$ $=28$ -21				-8 $=8$ $=8$ $=8$				$\begin{aligned} & =8 \\ & =7 \\ & =8 \\ & =8 \end{aligned}$
$\begin{array}{r} 13 \\ 12 \\ 11 \\ 10 \\ 9 \end{array}$				-20 $-\quad 1$ $+\quad 0$ $+\quad 0$				$\begin{array}{r}-20 \\ -\quad 4 \\ +\quad 0 \\ \hline\end{array}$				$-\quad 20$ $=12$ $=\quad 8$ $+\quad 2$				$\begin{aligned} & =80 \\ & =12 \\ & =8 \\ & =1 \end{aligned}$
$\begin{aligned} & 6 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \end{aligned}$				+6 $+\quad 4$ $+\quad 2$ $+\quad 3$				$\begin{aligned} & +6 \\ & +1 \\ & +\quad 0 \\ & +\quad 3 \end{aligned}$				$\begin{array}{r} +4 \\ +\quad 4 \\ +\quad 2 \\ +\quad 3 \end{array}$				$\begin{aligned} & +4 \\ & +4 \\ & +0 \\ & +8 \end{aligned}$
$\begin{aligned} & 3 \\ & 2 \\ & 2 \end{aligned}$				$\begin{aligned} & +5 \\ & +5 \\ & +\quad 1 \end{aligned}$				$\begin{aligned} & +5 \\ & +5 \\ & +\quad 1 \end{aligned}$				$\begin{array}{r} +5 \\ +5 \\ +\quad 1 \end{array}$				+8 $+\quad 5$ +1
Total.				+1525				+873				+1096				+597
	Brocken, Germany, No. 5				Scharfensteln, Germany, No. 6				Naye, Switzerland, No. 7				Villeneuve, Swltzerland, No. 8			
$\begin{aligned} & \mathrm{A} \\ & \mathrm{H} \\ & \mathrm{C} \\ & \mathrm{D} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & 3740 \\ & 3740 \\ & 3700 \\ & 3560 \\ & 3240 \end{aligned}$	$\begin{aligned} & +2 \\ & +68 \\ & +154 \\ & +258 \\ & +278 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ 0 \\ -\quad 8 \end{array}$	$\begin{aligned} & +2 \\ & +68 \\ & +154 \\ & +252 \\ & +270 \end{aligned}$	$\begin{aligned} & 2044 \\ & 2020 \\ & 1990 \\ & 2025 \\ & 2050 \end{aligned}$	$\begin{aligned} & +{ }^{2} \\ & +61 \\ & +133 \\ & +181 \\ & +143 \end{aligned}$	0 0 0 0 $-\quad 7$	$\begin{aligned} & +2 \\ & +61 \\ & +133 \\ & +181 \\ & +136 \end{aligned}$	$\begin{aligned} & \text { BXen } \\ & 6530 \\ & 6430 \\ & 5920 \\ & 5410 \end{aligned}$	$\begin{aligned} & +2 \\ & +59 \\ & +157 \\ & +257 \\ & +385 \end{aligned}$	0 0 $-\quad 4$ -11	$+\quad 2$ +89 +153 +251 +374	$\begin{aligned} & 1230 \\ & 1250 \\ & 1250 \\ & 1200 \\ & 1270 \end{aligned}$	$\begin{aligned} & +2 \\ & +62 \\ & +111 \\ & +109 \\ & +\quad 85 \end{aligned}$	0 0 0 0 0	$\begin{aligned} & +2 \\ & +82 \\ & +111 \\ & +109 \\ & +85 \end{aligned}$
$\begin{gathered} \mathrm{F} \\ \mathrm{G} \\ \frac{1}{1} \\ \frac{1}{J} \end{gathered}$	$\begin{aligned} & 2876 \\ & 2450 \\ & 25020 \\ & 19 \times 0 \\ & 1580 \end{aligned}$	$\begin{array}{r} +167 \\ +85 \\ +89 \\ +\quad 52 \\ +\quad 21 \end{array}$	$=10$ $=12$ $=16$ $=20$	+137 +73 +33 +32 $+\quad 5$	2078 2090 2100 17880 1480	$\begin{array}{r}+180 \\ +\quad 73 \\ +18 \\ +18 \\ \hline\end{array}$	- 8 $=9$ $=16$ $=14$	$\begin{aligned} & +62 \\ & +24 \\ & +\quad 2 \\ & +16 \end{aligned}$	$\begin{aligned} & 4710 \\ & 4300 \\ & 4100 \\ & 3820 \\ & 3390 \end{aligned}$	+319 +201 +140 +111 +56	$\begin{aligned} & -15 \\ & =16 \\ & =22 \\ & =30 \\ & -35 \end{aligned}$	+304 +185 +118 +81 $+\quad 21$	$\begin{aligned} & 1720 \\ & 2360 \\ & 2 \times 32 \\ & 3180 \\ & 3620 \end{aligned}$	+19 ± 10 $=14$ $=\quad 28$	- 4 $=\quad 7$ $=18$ $=35$ -35	$\begin{aligned} & \pm 18 \\ & =17 \\ & =30 \\ & =38 \end{aligned}$
$\begin{gathered} \mathrm{K} \\ \mathrm{~L} \\ \mathrm{M} \\ \mathrm{~N} \\ \mathbf{O} \end{gathered}$	$\begin{gathered} 1170 \\ 900 \\ 660 \\ 60 \\ 700 \end{gathered}$	0 0 $+\quad 5$ 0 0	- 10 $=18$ -35 -31 -38	+ 10 $=18$ $=30$ $=31$ -38	1170 900 660 801 700	0 0 0 0 0	- 13 $=18$ $=35$ -31 -38	$\begin{aligned} & =13 \\ & =18 \\ & =35 \\ & =31 \\ & =38 \end{aligned}$	$\begin{aligned} & 3950 \\ & 4310 \\ & 4710 \\ & 5080 \\ & 2700 \end{aligned}$	+58 +38 +30 +17 0	-64 -102 -273 -269 -139	- 98 $=843$ -243 -252 -139	$\begin{aligned} & 3730 \\ & 4290 \\ & 4310 \\ & 50 \times 0 \\ & 2700 \end{aligned}$	$\begin{array}{r}\text { - } 19 \\ =15 \\ \hline 14 \\ \hline\end{array}$	$\begin{aligned} & =57 \\ & =95 \\ & =251 \\ & -272 \\ & -139 \end{aligned}$	$\begin{aligned} & =76 \\ & -110 \\ & -265 \\ & -271 \\ & -139 \end{aligned}$
$\begin{aligned} & 18 \\ & 17 \\ & 16 \\ & 15 \\ & 14 \end{aligned}$				$\begin{aligned} & =6 \\ & =0 \\ & =7 \\ & =7 \end{aligned}$	-.			$\begin{aligned} & =6 \\ & =6 \\ & =6 \\ & =7 \end{aligned}$				-25 $=24$ $=25$ $=81$ -16				-25 $=24$ $=25$ $=21$ $=16$
$\begin{array}{r} 13 \\ 12 \\ 11 \\ 10 \\ 9 \end{array}$				$\begin{aligned} & -13 \\ & =16 \\ & =8 \\ & +\quad 8 \end{aligned}$				$\begin{array}{r} -13 \\ =15 \\ =\quad 6 \\ +\quad 3 \end{array}$				$\begin{aligned} & -18 \\ & \mathbf{+} \quad 8 \\ & +\quad 1 \\ & +\quad 8 \end{aligned}$				$\begin{aligned} & -18 \\ & +\quad 6 \\ & +1 \\ & +\quad 1 \\ & +\quad 2 \end{aligned}$
$\begin{aligned} & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \end{aligned}$				$\begin{aligned} & +B \\ & +1 \\ & +\quad 2 \\ & +3 \end{aligned}$				$\begin{array}{r} +6 \\ +\quad 4 \\ +\quad 2 \\ +\quad 0 \end{array}$				$\begin{aligned} & +6 \\ & +6 \\ & + \\ & +1 \\ & +8 \end{aligned}$				$\begin{aligned} & +5 \\ & +5 \\ & +4 \\ & +\quad 1 \end{aligned}$
$\begin{aligned} & 3 \\ & 2 \\ & 1 \end{aligned}$				$\begin{aligned} & +6 \\ & \pm \\ & +\quad 1 \end{aligned}$			+1	$\begin{array}{r} 5 \\ +\quad 5 \\ +\quad 1 \end{array}$				$\begin{aligned} & +1 \\ & +6 \\ & +\quad 1 \end{aligned}$				$\begin{aligned} & +1 \\ & +6 \\ & +1 \end{aligned}$
Total..				+879				+414				$+738$				-742

Mean elevations and corrections for topography and isostatic compensation, separate zones, for selected stations in EuropeContinued.

Zone	Elevstion in feet	Topography	Compensa tion	Topog. raphy and compenser tion	Elevan tion in feet	Topography	Com-pensation	Topography and com-pencation	Elevation in feet	Topography	Com-pensation	Topog raphy and compenss tion	Elevetion in feet	Topography	Compenssa tion	Topography and compensio tion
	Chaumont, SW [zerland, No. 9				Neuenbarg, 8 witzerland (Neuchatel) No. 10				Gornergrat, Switzerland, No. 11				Riffelberg, 8witzerland, No. 12			
$\begin{aligned} & A \\ & \mathbf{B} \\ & \mathbf{C} \\ & \mathbf{B} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & 3340 \\ & 3350 \\ & 3330 \\ & 3270 \\ & 3080 \end{aligned}$	$\begin{aligned} & +2 \\ & +58 \\ & +146 \\ & +241 \\ & +243 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ 0 \\ -\quad 5 \\ -\quad 8 \end{array}$	$\begin{aligned} & \pm 2 \\ & +58 \\ & +146 \\ & +236 \\ & +235 \end{aligned}$	$\begin{aligned} & 1600 \\ & 1570 \\ & 1540 \\ & 1530 \\ & 1640 \end{aligned}$	$\begin{aligned} & +2 \\ & +61 \\ & +122 \\ & +148 \\ & +86 \end{aligned}$	0 0 0 0 $-\quad 2$	$\begin{aligned} & +2 \\ & +61 \\ & +122 \\ & +148 \\ & +84 \end{aligned}$		+62 +68 +164 +323 +504	0 -1 $=12$ -17	+8 +64 +160 +311 +487	$\begin{aligned} & 8420 \\ & 8400 \\ & 8340 \\ & 5200 \\ & 8100 \end{aligned}$	$+\quad 2$ $+\quad 60$ +156 +326 +480	0 0 $-\quad 4$ -16	$\begin{aligned} & +2 \\ & +60 \\ & +152 \\ & +317 \\ & +464 \end{aligned}$
$\begin{gathered} F \\ G \\ H \\ H \\ I \end{gathered}$	$\begin{aligned} & 2580 \\ & 2180 \\ & 2080 \\ & 2310 \\ & 2540 \end{aligned}$	+144 +64 +35 +40 +22	\% $=8$ $=15$ $=122$ -30	+136 +56 +20 $+\quad 18$	$\begin{aligned} & 1810 \\ & 1970 \\ & 1840 \\ & 1960 \\ & 2430 \end{aligned}$	+86 +38 +16 +11 $+\quad 8$	- 4 $=18$ $=12$ $=17$ -27	$\begin{aligned} & \pm 34 \\ & \pm 10 \\ & =10 \\ & -\quad 10 \end{aligned}$		+538 +538 +402 +333 +306 +180	-30 -30 $=31$ $=84$ -84 -107	+508 +371 +289 +212 +73	7590 7980 8600 9940 10390	+457 +336 +269 +216 +121	- 23 $=30$ $=45$ $=88$ -108	$\begin{aligned} & +434 \\ & +306 \\ & +224 \\ & +128 \\ & +13 \end{aligned}$
$\begin{aligned} & \mathrm{K} \\ & \mathrm{~L} \\ & \mathrm{M} \\ & \mathrm{~N} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & 2510 \\ & 2500 \\ & 2560 \\ & 3120 \\ & 2960 \end{aligned}$	+14 +1 $+\quad 6$ +10 0	- 36 $=61$ -162 -170 -150	$\begin{aligned} & -22 \\ & =60 \\ & =156 \\ & -160 \\ & -150 \end{aligned}$	$\begin{aligned} & 2480 \\ & 2520 \\ & 2760 \\ & 3120 \\ & 2960 \end{aligned}$	$\begin{array}{r}+10 \\ +\quad 8 \\ +\quad 2 \\ +\quad 4 \\ \hline\end{array}$	-35 $=63$ -162 -166 -150	$\begin{aligned} & -45 \\ & =61 \\ & \text { - } 160 \\ & -162 \\ & -150 \end{aligned}$		+137 +80 +82 +28 $+\quad 2$	-148 -177 -328 -243 -162	- 98 $=97$ $=246$ $=217$ -160	8730 7410 5770 4550 2920	+105 +65 +63 +25 0	-148 -175 $=339$ -244 -142	$\begin{aligned} & -41 \\ & =110 \\ & =278 \\ & =219 \\ & -142 \end{aligned}$
$\begin{aligned} & 18 \\ & 17 \\ & 16 \\ & 15 \\ & 14 \end{aligned}$				$\begin{aligned} & =24 \\ & =24 \\ & =22 \\ & =20 \\ & =21 \end{aligned}$				$=24$ $=24$ $=28$ $=20$				$=32$ $=31$ $=23$ $=11$				$\begin{aligned} & =38 \\ & =31 \\ & =88 \\ & =17 \\ & =11 \end{aligned}$
$\begin{aligned} & 13 \\ & 12 \\ & 11 \\ & 19 \\ & 9 \end{aligned}$				-23 $+\quad 6$ $+\quad 2$ +1				-29 $+\quad 6$ $+\quad 4$ $+\quad 1$				$\begin{array}{r}-11 \\ \hline+8 \\ +\quad 1 \\ \hline\end{array}$				$\begin{array}{r}-11 \\ +\quad 8 \\ \hline 81\end{array}$
$\begin{aligned} & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \end{aligned}$				$\begin{aligned} & +5 \\ & +5 \\ & +8 \\ & +3 \\ & +\quad 3 \end{aligned}$				$+\quad 5$ $+\quad 5$ $+\quad 4$ $+\quad 1$				+8 +8 $+\quad 4$ $+\quad 1$				+8 +81 +1 +8
$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$				$\begin{aligned} & +1 \\ & +5 \\ & +1 \end{aligned}$				$\begin{aligned} & +4 \\ & +\quad 5 \\ & +\quad 1 \end{aligned}$				$\begin{aligned} & +5 \\ & +5 \\ & +\quad 1 \end{aligned}$				+1 +5 $+\quad 1$
Total..				$+246$				-255				+1653				+1217
	Zermatt, Switzerland, No. 13				Belalp, Switzerland, No. 14				Brig, Switzerland, No. 15				Eggishorn, Switzerland, No. 16			
$\begin{aligned} & A \\ & B \\ & C \\ & D \\ & D \end{aligned}$	$\begin{aligned} & 5260 \\ & 5260 \\ & 5280 \\ & 5480 \\ & 6839 \end{aligned}$	$+\quad 2$ $+\quad 63$ +164 +296 +346	0 $-\quad 0$ $\quad 6$ -14	$\begin{aligned} & +2 \\ & +68 \\ & +160 \\ & +230 \\ & +332 \end{aligned}$	$\begin{aligned} & 6995 \\ & 67.51 \\ & 6770 \\ & 6530 \\ & 6310 \end{aligned}$	$\begin{aligned} & +2 \\ & +52 \\ & +142 \\ & +289 \\ & +421 \end{aligned}$	$\begin{array}{r}0 \\ 0 \\ -\quad 4 \\ \hline\end{array}$	$+\quad 2$ $+\quad 52$ +138 +283 +408	$\begin{aligned} & 2240 \\ & 2250 \\ & 2270 \\ & 2440 \\ & 2680 \end{aligned}$	$+\quad 2$ +84 +139 +189 +149	$\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ -\quad 8 \end{array}$	$\begin{aligned} & +8 \\ & +64 \\ & +139 \\ & +189 \\ & +141 \end{aligned}$	$\begin{aligned} & 7180 \\ & 7130 \\ & 7010 \\ & 6900 \\ & \square m 0 \end{aligned}$	$\begin{aligned} & +2 \\ & +\quad 54 \\ & +145 \\ & +293 \\ & +442 \end{aligned}$	$\begin{array}{r}0 \\ 0 \\ -\quad 4 \\ -\quad 6 \\ \hline\end{array}$	$+\quad 2$ +54 +141 +287 +427
$\begin{aligned} & \mathrm{F} \\ & \mathrm{Q} \\ & \frac{H}{\mathrm{I}} \\ & \frac{\mathrm{~J}}{} \end{aligned}$	514 7910 8780 9380 10800	+233 +116 +60 +25 +6	- 21 -28 -13 $=81$ -111	$\begin{array}{r} +212 \\ +88 \\ +17 \\ \pm 56 \\ -105 \end{array}$	$\begin{aligned} & 6530 \\ & 6710 \\ & 6810 \\ & 6990 \\ & 6900 \end{aligned}$	+388 +262 +175 +137 +86	- 20 $=25$ $=32$ $=60$ -74	$\begin{aligned} & +368 \\ & +237 \\ & +143 \\ & +\quad 77 \\ & +12 \end{aligned}$	$\begin{aligned} & 3070 \\ & 4030 \\ & 5100 \\ & 6250 \\ & 6900 \end{aligned}$	+18 $+\quad 72$ +17 -56 -34	- 10 $=14$ $=25$ $=52$	+18 $+\quad 62$ ± 8 -109 -109	$\begin{aligned} & 6590 \\ & 6070 \\ & 6240 \\ & 7120 \\ & 8030 \end{aligned}$	+371 +247 +190 +162 +84	- 20 $=20$ $=31$ $=62$ $=86$	$\begin{aligned} & +351 \\ & +227 \\ & +159 \\ & +100 \\ & +\quad 2 \end{aligned}$
$\begin{gathered} \mathrm{K} \\ \mathrm{~L} \\ \mathrm{M} \\ \mathrm{~N} \\ \mathrm{O} \end{gathered}$	$\begin{aligned} & 8880 \\ & 7720 \\ & 6220 \\ & 4770 \\ & 2920 \end{aligned}$	+25 $+\quad 19$ +22 $+\quad 8$ 0	-149 -182 -343 -246 -142	-124 -163 -321 -237 -142	$\begin{aligned} & 7480 \\ & 6090 \\ & 5420 \\ & 4250 \\ & 3210 \end{aligned}$	+88 $+\quad 68$ +510 $+\quad 24$ 0	-125 $=162$ $=340$ $=230$ -157	-57 -111 -300 -206 -157	7170 7290 5880 4250 3210	-33 -33 -15 $+\quad 8$ 0	-119 -169 -343 -226 -157	-152 -198 -358 -218 -157	8140 6210 6370 4060 3330	+88 +88 +45 $+\quad 45$ $+\quad 0$	-138 $=140$ -317 -218 -159	- 68 $=95$ -272 -198 -159
18				- 38				- 28				- 28				- 88
17				- 31 $=83$				-25 -82	.			-25	…			-25
15				- 217				- 28				- 20				- 80
14				- 11				- 14				- 14				- 14
$\begin{gathered} 13 \\ 12 \\ 11 \\ 10 \\ 9 \end{gathered}$				$\begin{aligned} & -11 \\ & +\quad 6 \\ & \pm \quad 1 \\ & +\quad 3 \end{aligned}$				$\begin{array}{r} -16 \\ +\quad 1 \\ +\quad 1 \\ +\quad 1 \end{array}$..			-16 $+\quad 1$ $+\quad 1$ $+\quad 1$				-18 $+\quad 7$ +1 +1
$\begin{aligned} & 6 \\ & 5 \\ & \text { in } \end{aligned}$				$\begin{aligned} & +8 \\ & +6 \\ & +4 \\ & +8 \end{aligned}$				+6 +6 +8 +8				$\begin{aligned} & +6 \\ & +6 \\ & +1 \\ & +8 \end{aligned}$				$\begin{aligned} & +0 \\ & +8 \\ & +8 \\ & +8 \end{aligned}$
$\begin{aligned} & 3 \\ & 1 \\ & 1 \end{aligned}$				$\begin{aligned} & +1 \\ & +6 \\ & +1 \end{aligned}$				$\begin{aligned} & +4 \\ & +6 \\ & +\quad 1 \end{aligned}$				$\begin{aligned} & +1 \\ & +8 \\ & +1 \end{aligned}$				$\begin{aligned} & +4 \\ & +5 \\ & +1 \end{aligned}$
Total				- 74				+791				-847				+850

Maan elevations and corrections for topography and isostatic compensation, separate zones, for selected stations in Europe-Con.

Zone	Eleva tion tu feet	Topography	$\begin{aligned} & \text { Coms- } \\ & \text { sumsa } \\ & \text { tion } \end{aligned}$	$\begin{gathered} \text { Topog- } \\ \text { raphy } \\ \text { wan } \\ \text { compen- } \\ \text { matima } \end{gathered}$
	Fiesch, 8witzerland, No. 17.			
$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 3440 \\ & 3510 \\ & 3510 \\ & 3640 \\ & 4020 \end{aligned}$	$\begin{aligned} & +\quad 2 \\ & +50 \\ & +153 \\ & +253 \\ & +248 \end{aligned}$	0 0 -8 $-\quad 8$	$\begin{aligned} & +{ }^{2} \\ & +50 \\ & +153 \\ & +247 \\ & +240 \end{aligned}$
$\begin{gathered} F \\ G \\ G \\ \frac{H}{I} \\ \frac{J}{2} \end{gathered}$	$\begin{aligned} & 4640 \\ & 5220 \\ & 6070 \\ & 6850 \\ & 8020 \end{aligned}$	$\begin{array}{r} +132 \\ +\quad 85 \\ +12 \\ =8 \\ -\quad 10 \end{array}$	-13 $=18$ $=32$ $=88$	$\begin{array}{r} +119 \\ \pm 37 \\ -20 \\ =68 \\ -101 \end{array}$
$\begin{aligned} & \mathrm{K} \\ & \mathrm{~L} \\ & \mathrm{M} \\ & \mathrm{~N} \\ & \mathrm{O} \end{aligned}$	7820 6370 5370 1060 3330	$\begin{array}{r}-20 \\ +\quad 5 \\ +\quad 7 \\ \hline\end{array}$	-132 -149 -318 -221 -159	$\begin{aligned} & -152 \\ & -144 \\ & -322 \\ & -214 \\ & -159 \end{aligned}$
$\begin{aligned} & 18 \\ & 17 \\ & 16 \\ & 15 \end{aligned}$				$\begin{aligned} & -28 \\ & =25 \\ & =88 \\ & =80 \end{aligned}$
$\begin{array}{r} 13 \\ 12 \\ 11 \\ 10 \\ 9 \end{array}$				- 18 +1 $+\quad 1$ $+\quad 1$
$\begin{aligned} & 8 \\ & 7 \\ & 6 \\ & 5 \\ & 4 \end{aligned}$				$\begin{aligned} & +6 \\ & +8 \\ & +1 \\ & +8 \end{aligned}$
$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$				$\begin{aligned} & +4 \\ & +\quad 5 \\ & +1 \end{aligned}$
Total				-428

PRINCIPAL FACTS FOR 219 STATIONS IN THE UNITED STATES.
The names of the observers, with the dates on which the observations were made, are given with the summaries of observations at the gravity stations, on pages 144 to 176.

Since the preceding report on gravity investigations (Special Publication No. 12, 1912) 94 stations have been established in the United States. At all of these stations the Mendenhall half-sacond pendulums were used. A description of the apparatus and of the method of determining the period of the pendulums is given in Appendix 5, Report for 1901, by G. R. Putnam, and in Appendix 1, Report for 1894. Since 1909 the flexure of the pendulum case and pier has been determined by means of the interferometer, designed and made by E. G. Fischer, chief of the instrument section of the United States Coast and Geodetic Survey. This instrument and its use are described by W. H. Burger in Appendix 6 of the Report for 1910.

Previous to 1913 the chronometer rates were determined by local observations on the stars with a portable astronomical transit. Since that date the rates of the chronometers have been determined from time transmitted by noon signals sent from the Naval Observatory at Washington over the wires of the Western Union Telegraph Company and the Postal Telegraph Company. As only the rates were required, and not the chronometer corrections, the effect of transmission time was eliminated, as it proved to be nearly the same for each day at any one station. Before making use of the Naval Observatory time it was carefully tested at the base station at the Survey office. It was also tested on the field by reoccupying four stations. The tests proved entirely satisfactory, as the results agreed closely with those previously obtained when the chronometers were rated by star observations.

An improvement was made by having a thick felt-and-leather cover for the pendulum case. This made the temperature in the case much more uniform, and no doubt added to the accuracy of the results. This covering is shown in figures 3 and 4.
Speclal Publication No. 40.

$$
651
$$

Special Publication No. 40

FIG. 3.-PRESENT PENDULUM APPARATUS SHOWING VERTICAL FORM OF TELESCOPE, ELECTRIC ILLUMINATION FOR OBSERVING SLIT, AND THE FELT-AND-LEATHER CASE FOR CONTROLLING THE TEMPERATURE.

Special Publicatlon No. 40

FIG. 4.-FELT-AND-LEATHER CASE FOR TEMPERATURE CONTROL PARTLY REMOVED FROM-PENDULUM RECEIVER.

Another improvement was made by changing the telescope of the flash apparatus to the vertical instead of the horizontal position, as formerly, by the use of a prism. (See fig. 3.) With the telescope vertical the observer is able to work with greater comfort, as the case is always mounted only a few inches above the floor of the room in which observations are made.

During the work at the 94 recent stations, only one of the six pendulums used gave trouble. This was pendulum No. B4. The trouble was eliminated by strengthening the connection betwean the stem and bob by an additional rivet.

In most cases three pendulums were used at each station. Each pendulum was swung for three periods of approximately eight hours each between two consecutive noon time-signals. The exceptions to this general rule occurred when in Mr. Powell's work on the field in the spring of 1915 pendulum No. B4 showed great irregularities. He continued that season with the other two pendulums of the set. He swung one of the pendulums for two days, or six periods of eight hours each, and the other for three such periods, making nine periods in all, the number ordinarily obtained when using three pendulums.

The pendulums were standardized at the Coast and Geodetic Survey office at Washington between each two seasons. The results of the standardizations are given on page 141.

Complete computations have been made for 219 gravity stations in the United States by three methods of reduction and the results are shown in the following table.

The theoretical value in dynes of gravity at sea level was computed by Helmert's formula of 1901 for the Potsdam system, namely:

$$
\gamma_{0}=978.030\left(1+0.005302 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right)
$$

The correction in dynes for elevation of station was computed by the formula $-0.0003086 H$, in which H is the elevation in meters. It should be carefully noted that with the sign as given this is the reduction from sea level to the station, a correction to the theoretical value not to the observed value. This correction takes account of the increased distance of the station from the attracting mass, as if the station were in the air and there were no irregularities in the earth's surface (or topography).

The corrections for topography and compensation by the Hayford method were computed with the reduction tables shown on pages 30 to 47 of Special Publication No. 10, and the resultant effect was applied as a correction to the theoretical value at sea level.

These corrections are often applied to the observed values and the results are compared with the theoretical value of gravity at sea level. The method employed in this publication and in Special Publications Nos. 10 and 12 appears to be the more logical one.

The computed value of gravity, g_{c}, at the station is the theoretical value of gravity at sea level, γ_{0}, corrected for elevation and for topography and compensation. It is therefore directly comparable with g, the observed value of gravity at the station. The column $g-g_{0}$, therefore, represents the departures of the observed values from computed values based upon the Helmert formula of 1901, upon the usual reduction for elevation, and upon the Hayford reductions that take account of topography and compensation.

All observed values, g, in the following table depend upon relative determinations with the half-second pendulums and are based on 980.112 dynes as the value of gravity at the Coast and Geodetic Survey office at Washington. This value depends upon the absolute determination of the value of gravity at Potsdam, ${ }^{a}$ Germany, and upon the adjustment of the net of base stations throughout the world. (See pp. 25 and 244 of third volume, by Dr. E. Borrass in 1911, of the Report of the Sixteenth General Conference of the International Geodetic Association at London and Cambridge in 1909.) The observations used in the adjustment to connect Washington with stations in Europe were made by G. R. Putnam in 1900. ${ }^{\text {b }}$

[^3]Principal facts for 219 gravity stations in the Uniled States.

Number and name of station	Latitude		Loogitude		Elevation	Theorutiral gravity γ_{0}	Correction for tion	Correction for topography and compensutan	$\begin{aligned} & \text { Com- } \\ & \text { puted } \\ & \text { gravity } \\ & \text { at sta- } \\ & \text { tion } \\ & \text { Oc } \end{aligned}$	Observed gravity at sta- tion 0	980
	-		-		Meters	Dynes.	Dynes.	Dymes.	Dymes.	Dynes.	Dynes.
1. Key West, Fla	24	33.6	81	48.4		00x.823	0.000	+0.035	978. 957	978.970	+0.013
2. West Palm Beach,	28	42.8	80	02.8	2	979.073	-. 001	+.031	9\%9. 1 a \%	W0. 120	$+.026$
3. l'unta (iorda, Fla		56. 2	82	${ }^{03}$	1	O7T. 309	. 000	+.020	O74 W\%	974. 127	+.018
4. Apulachicola, Fla		43.5	84	58.8		979.300	-. 001	+.015	979.314	979.322	+.008
5. New Orleans, La		57.0		04.2	2	979.317	-. 001	+.013	[92. 321	979.324	-.005
6. Rayville, Lo	32	28	91	45	26	979.519	-. 008	+.008	979.519	970 5 ¢	$+.024$
7. (ialveston, Te	29	18.2	94	47.5	8	879.287	-. 001	+.007	979.273	979.272	-.001
8. Point Isabel, T	26	04.7	97	12.4	8	979.028	-. 002	+.015	979.041	979.076	+.035
9. Laredo, Tex.		30.5	99	31.2	129	979.131	-. 040	+.003	Mrsam	\%re.ind	-. 012
10. Austin, Tex. (capitol)		16.5		4.3	170	Whisw	-. 052	-. 003	9 Na 288	070.288	000
11. Austin, Tex (university)	30	17.2	97	44.2	189	979.344	-. 058	-. 001	979.285	979.283	-. 002
12. McAlestor, Okla	34	56.2	95	46.2	240	979.725	=.074	+.001	979.852	प7र2. Fiz	-. 019
13. Tittle Roc		45.0	92	16.4	89	979. 709	-. 027	+.001	979.683	979.721	+.038
14. Columbia,	35	36.7	87	02.5	207	979.783	-. 064	+.008	979.725	979.759	+.034
15. Atlanta,	33	45.0	84	23.3	324	970.625	-. 100	+. 014	979.539	979.524	-.015
16. MeCormiek	33	54.8	82	18.0	163	979.639	-. 050	+. 012	979.601	979. 624	+.023
17. Charleston	32	47.2	79	56.0	6	979.545	-. 002	+.016	979.3.59	979.546	-. 013
18. Beaufort,	34	43. 1	76	89.8	1	979. 706	. 000	+.036	979.742	979.729	-. 013
19. Charlottesvil	33	02.0	78	30.3	166	979.992	-. 051	+.002	979.943	979.038	-. 005
20. Deer l'ark, M		25.0	79	19.8	770	980.114	-. 238	+.041	979.917	Wasm	+.018
21. Washington, D. C. (Coast and Geodetic Survey Offlee)	38	53.2	77	00.5	14	980. 067	-. 004	+.004	EPM, 0 S	980.112	$+.045$
22. Washington, D. C. (8mithsonian lnstitution).	38	53.3	77	01.5	10	980. 067	-. 003	+.003	980. 067	980.114	+.047
23. Baltimore, Md	39	17.8	76	37.3	30	980. 103	-. 009	+.006	9847.100	980.097	-. 003
24. Philadelphia,	39	57.1	75	11.7	16	980. 162	-. 005	+.009	950.166	980.198	+.030
25. Priaceton,	40	21.0	74	39.5	64	980.196	-. 020	+.013	980. 189	¢0.178	-. 011
28. Hoboken,	40	4	74	02	11	B3a Sc	-. 003	+.008	980.237	Penvore	+.032
27. New Yorl	40	48.5	73	57.7	38	980.238	-. 012	+.011	980.237	\%aca, 20	+.030
28. Worceste	42	16. 5	71	48.5	170	980.370	-. 052	+.018	930. 336	980.324	-. 012
29. Boston, Mass	42	21.6	71	03.8	22	980.377	-. 007	+.013	980.383	930.396	$+.013$
30. Cambridge,		22.8	71	07.8	14	980 879	-. 004	$+.010$	200, 885	resus	$+.013$
31. Calais,	45	11.2	67	16.9	38	980. 833	-. 012	+.010	- $0^{0.851}$	980. 631	1000
32. Ithaca,	42	27.1	76	29.0	247	990. 386	-. 076	$+.005$	980.315	980.300	-. 015
33. Cleveland, Ohio	41	30.4	81	36.6	210	980.301	-.065	. 000	950.236	880.241	+.005
34. Cincinnati, Ohi	39	03.3	84	25.3	245	980.089	-. 076	+.002	9880.015	anicul	-. 011
35. Terre Haute, In		28.7	87	23.8	151	980. 119	-. 047	$+.001$	980.073	980.072	-. 001
36. Chicago, III	41	47.4	87	36.1	182	04836	-. 056	+.007	980.277	983278	+.001
37. Madison.	43	04.6	89	24.0	270	980.442	-. 083	+.003	9881.362	कucr	+.003
38. St. Louis	38	35.0	90	12.2	154	980.045	-. 048	+.001	Unacos	B6ator	+.003
39. Kansas City	39	05.8	94	35.4	278	930.085	-. 086	-. 001	craves	U0\%.00]	-. 008
40. Ellsworth,		43.7	88	13.5	469	880.053	-. 145	-. 004	979.904	Prupas	+.022
41. Wallace, Kans	38	54.7	101	35.4	1005	880.060	-. 310	. 000	979.759	979.755	-. 004
42. Colorado Spring	38	50.7	104	49.0	1841	980. 064	-. 568	-. 007	970.189	Dramen	+.001
43. Pikes leak,	38	50.3	105	02.0	4293	0-2, 103	-1.325	+. 187	90.ves	978.954	+.029
44. Denver, Colo	39	47. 6	104	56.9	1639	980. 137	-. 505	-.015	979.617	972.68	-. 008
45. Gunnison, Co	38	32.6	106	56.0	2340	880.037	-. 722	-. 001	979.314	The 342	$+.028$
48. Grand Junction, Colo	39	04. 2	108	33.9	1398	980.083	-. 431	-. 051	0raver	978 63	+.032
47. Green River, Utah	38	58.4	110	09.9	1243	980. 076	-. 384	-. 043	Pra. 048	979. 636	-. 013
48. Pleasant Valley Juncti	39	50.8	111	00.8	2191	980. 152	-.076	+. 024	979. 500	979. 512	+.012
49. Salt Lake City, Utah	40	48.1	111	63.8	1322	980.234	-. 408	-. 041	979.785	979.803	+.018
50. Grand Canyon, Wy		43.3	110	29.7	2356	980. 591	. 736	$+.038$	07. 898	979.899	+.003
51. Norris Geyser Basin, Wyo.	44	44.2	110	42.0	27\%	904. 1×2	-. 702	+. 031	979.921	979.950	$+.029$
52. Lower Geyser Basin, Wyo	44	33.4	110	48.1	2200	980.576	-. 679	+.028	979.925	979.932	+.007
63. Seattle, Wash. (university)	47	39.6	122	18.3	s	980.856	-. 018	-. 020	(0x, 818	Mes 7×8	-. 085
54. San Francisco, Cal	37	47.5	122	25, 7	114	979.970	-. 035	+. 045	979.400	0ra, gea	-. 015
55. Mount Hamilion,		20.4	121	38.6	1282	979.931	-. 388	+. 120	979.655	¢7\% $0 \times$	$+.005$
56. Seattle, Wash. (high school)	47	36.5	122	19.8	74	980.851	-. 023	-. 018	980.810	Q5a 725	-. 085
57. Iron River, Mich	48	05.4	88	38.4	458	950.714	-. 111	$+.014$	980.587	Oba 6×3	+.046
58. Ely, Minn	47	48.6	92	01.0	448	880.870	-. 138	+.008	rask i4e	980.771	+.081
59. Pembina, N. Das		58.1	97	14.9	243	880.974	-. 075	-. 009	mavim]	980.917	+.027
60. Mitchell, S. Dak	43	41.8	98	01.8	408	880. 498	-. 128	-.006	Led306	980.375	+.009
61. Sweetwater, Tex		28.4	100	24.1	855	979. 519	-. 202	+.009	max 38	979.305	-. 081
62. Kerrville, Tex	30	01.3	99	07.6	498	979.323	-. 154	+. 013	U92.182	979.221	+.039
63. El Paso, Tex	31	46.3	106	29.0	1146	Era 18	-. 354	+.001	979.109	979.124	+.015
64. Nogales, Ariz	31	21.3	110	56.8	1181	00. 580	-. 364	+.038	979. 103	978. 401	-. 012
65. Yuma, Ariz		43.3	114	37.0	64	979.639	-. 017	-. 010	979.512	M0. ${ }^{2} 8$	$+.017$
66. Compton, Cal	33	53.4	118	13.2	20	Era 515	-. 008	. 000	\%rassa	Moses	-. 042
67. Goldfleld, Nev	87	42.2	117	14.5	1716	0nd 0us	-. 529	+.027	979. 461	972. 8.5	-. 005
68. Y8vapai, Ariz		03.9	112	07.1	2179	979.821	-. 672	$+.034$	Ma. 143	P09. 193	+.008
69. Grand Canyon, Ar	36	05.3	112	06.8	849	90. 383	-. 262	-. 096	9ru 485	57843	-. 002
70. Gallup, N. Mex		31.8	108	41.2	IV0)	979.775	-. 614	$+.014$	979.175	979.170	-.005
71. Las Vegas, N. Mex		35.8	105	12.1	1980	979.781	-. 605	+. 017	W7.103	970.34	+.011
72. Shamrock, Tex.	35	12.8	100	11.4	708	979.748	-. 218	+.007	979. 537	979.577	+.040
73. Denison, Tex	33	45.3	96	32.8	230	979.625	-. 071	-.001	979.553	Mrasas	+.013
74. Minneapolis,		88.7	93	13.9	256	O60. 614	-. 079	$\div .005$	880.530	nas.8®?	+.067
75. Leed, 8. Daz	4	21.1	108	45.6	1680	980. 557	-. 491	+.04	980.110	[00 170	$+.060$

Principal facts for 219 gravity stations in the United States-Continued.

Number and name of station	Latitude		Longitude		Elevation H	Theoretical gravity ro	Correc- tion for elevation	Correction for topography and compen- sation	Computed gravity at station g。	$\begin{gathered} \text { Observed } \\ \text { gravity } \\ \text { at sta- } \\ \text { tion } \\ g \end{gathered}$	$0-90$
			-		Meters	Dynes	Dynes	Dynes	Dynes	Dynes	Dynes
76. Bismarck, N. D	46	48. 5	100	47.0	516	980. 779	-0.159	-0.005	980.615	980.625	+0.010
77. Hinsdale, Mont	48	23.8	107	05.3	661	980.923	-. 204	-. 017	980.702	980.739	+.037
78. Sandpoint, Idah	48	16. 4	116	33.3	637	980. 911	-. 197	-. 044	980.670	980. 680	+.010
79. Boise, Idaho.		37.2		12.3	821	880.491	-. 253	-. 012	980. 196	980.212	+.016
80. Astoria, Oreg		11.3		50.2	1	-60.721	. 000	+.008	980.732	980. 727	-. 005
81. Sisson, Cal.	41	18.3	122	19.6	1048	980. 282	-. 323	+. 015	979.974	979.972	-. 002
82. Rock Spring		35. 1		13.2	1910	980. 308	-. 589	-. 001	979.718	979.739	+.021
83. Paxton, Neli	41	07.4	101	21.3	932	980.266	-. 288	+.002	979.980	979.982	+.002
84. Washington,	38	56.3		04.0	103	980.070	-. 032	+. 012	980.050	980.095	$+.045$
85. North Hero,		49.1	73	17.5	35	980.509	-. 011	-.009	980.579	980. 588	+.009
85. Lake Placid,		17.5	73	59.1	571	980. 551	-. 176	+.032	980.407	980.421	+. 014
87. Potsdam, N	44	40.1	74	58.8	130	980.586	-. 040	-. 004	980.542	980.571	+.029
88. Wilson, N		18.4		49.6	87	980.462	-. 027	-. 002	980.433	980.431	-. 002
89. Alpena, Mich	45	03.8	83	27.0	178	980.622	-. 055	. 000	980.567	980.555	-. 012
90. Virginia Beach,		50.5		58.4	1	979.888	-. 001	+. 025	979.912	979.872	-. 040
91. Durham	36	00.2	78	53.5	120	979.816	-. 039	+. 014	979.791	979.835	+. 044
92. Fernandina,	30	40.2	81	27.7	3	979.374	-. 001	+. 017	979.390	979.408	+.018
93. Wilmer, Ala	30	49.2	88	20.5	69	979.386	-. 021	+.018	979.383	979.347	-. 036
94. Aliceville, Ala	33	07.6	88	10.8	61	979.572	-. 019	+.008	879.561	979. 552	-. 009
85. New Madrid,		35.5	89	31.6	79	979.867	-. 024	+.001	979.844	979.853	+.009
96. Mena, Ar	34	35.2	94	14.6	368	979.695	-. 114	+.015	979.596	979. 552	-. 044
97. Narogdoches,	31	36.2	B	37.8	92	979.448	-. 028	+.008	979.427	979.424	-. 004
98. Alpine,	30	21.5	103	39.7	1359	979.349	-. 420	+.033	978.962	978.991	+.029
99. Farwell, T	34	23.2	103	01.8	1259	979.678	-. 388	+. 011	979.301	979.293	-. 008
100. Guymon,	36	40.7		28.7	949	979.874	-. 293	-. 001	979.580	979.571	-. 009
101. Helenwood, Ten	36	25.9	84	32.6	62	979.853	-. 130	+. 015	979.738	979.788	$+.048$
102. Cloudland, Ten	36	06.2	82	07.9	1890	979.824	-. 583	+. 130	979. 371	979. 383	+.012
103. Hughes, Tenn	36	08.5	82	07.2	D3	979.827	-. 306	+. 053	979.574	979. 553	-. 021
104. Charleston, W	38	20.9	81	37.7	184	980.019	-. 057	-. 010	979.952	979.936	-. 016
105. State Colloge,		47.8		51.8	358	980.237	. 110	$+.010$	980.137	980. 124	-. 013
103. Fort Kent, M	47	14.9	68	36.0	160	Cxi 818	-. 049	+.001	980.770	980.765	-. 005
107. Prentice, Wis	45	32.6	08	17.8	469	980. 665	-. 145	+.010	980. 530	080.562	+.032
108. Fergus Falls,	46	17.2	09	05.0	366	980. 732	-. 113	+.001	[suinca	(xatis	+.002
109. Sheridan, Wyo	44	48.0	106	58.7	1150	980.598	-. 355	-. 031	980.212	980.252	$+.040$
110. Boulder, Mon		14.2		07.3	1493	980.727	-. 461	-. 007	280.259	980.252	-.007
111. 8kykomish, Wash	47	42.4	121	22.3	2	980.880	-. 086	-. 047	980.727	980.707	-. 020
112. Olympia, Wash	47	03.4	122	52.7	19	980.802	-.006	-. 012	980.784	980.825	+.041
113. Heppner, Oreg	45	21.4	119	33.2	598	980.648	-. 185	-. 007	980.458	980.437	-. 019
114. Truckee, Cal.	39	19.6	120	11.4	1805	980. 105	-. 557	+.057	979.605	979.585	-. 020
115. W'innemucea,		58.4		43.8	1311	080.253	-. 404	-. 004	979.845	979.844	-. 001
116. Ely, Nev.	39	14.9	114	53.4	1962	880.099	-. 605	+. 020	979.514	979.501	-. 013
117. Guernsey, Wy	42	16.1	104	44.0	1322	980.368	-. 408	-. 016	979.945	979.989	+.044
114. Plerre, S. Dals	44	21.9	100	20.8	454	980.558	-. 140	-. 013	980.405	980.427	+.022
119. Fort Dodge, To	42	30.8	94	11.4	340	980. 391	-. 105	+.002	980.288	980.311	+.023
120. Keithsburg,		06.4	80	57	167	980.265	-. 051	-. 003	980.211	980.211	000
121. Orand Rapids,	42	58.0	85	40.8	236	980.432	-. 073	+.003	980.362	980.372	$+.010$
122. Angola, Ind	41	37.7	85	00.6	318	980.312	-. 098	+. 011	980.225	880.244	+. 019
123. Albany	42	39.1	73	46.1	61	880. 404	-. 019	-.006	980.379	980.344	-. 035
124. Port Jervis, N	41	22.4	74	41.1	141	980.288	-. 044	+.003	980.247	980.222	-. 025
125. Atlantic City,		21.9	74	25.0	3	980.110	-. 001	+.018	980.127	980.112	-. 015
123. Bridgehampton,		58.0	72	18.4	10	980.249	-. 003	+.020	980.266	980.252	-. 014
127. Chatham, M	41	40.7	69	57.3	2	980.316	-. 001	+.024	980.339	980.333	-. 006
128. Rockland, M	44	06.3	69	(80	9	980.535	-. 003	+. 011	980.543	080. 533	-. 007
129. Lancast	44	29.5	71	34.3	201	980.570	-. 081	+.007	980.496	980.486	-. 010
180. Whitahall		33.0	73	23.8	38	980.484	-. 012	-. 012	080.460	980.429	-. 031
131. Little Falls, 1	43	02.7	74	51.2	137	PM.4s9	- . 042	-. 000	080.390		
132. Watertow	43	58.3	75	54.6	147	980. 522	-. 045	+.001	980.478	980.461	-. 017
183. Southport,	42	03.7	76	48.6	266	980. 351	-. 082	+.004	980.273	980.251	-. 022
134. Frie,	42	07.8	80	04.8	188	980.357	-. 081	+.001	980.297	980.278	-. 019
135. Parkersburg,		16.0		33.7	185	980.101	-. 057	-. 008	980.038	980.022	-. 016
138. Columbus Ohio	39	57.8	82	59.4	231	980.163	~. . 071	+.001	980.093	980.089	-. 004
137. Indianapoils I	39	45.9	86	08.8	217	980.145	-. 067	+.003	980.081	980.090	$+.009$
13x. Springfield, 11	39	47.7	89	39.5	183	880.148	-. 056	+.005	980.097	980.089	-.008
139. Labanom,	37	41.1	92	39.1	385	979.962	-. 119	+.012	979.855	979.874	+.019
140. Joplin,		05.1		30.8	303	979.910	-. 094	+.001	979.817	979.841	+.024
141. Fort Emith, Art	35	23.3	94		135	979.763	-. 042	-. 007	979.714	979.706	-. 008
142. Toxarkana, Art	33	25.5	94	02.5	n	979. 598	-. 031	+.001	979.568	979.587	+.019
143. Hot Springs, Ar	34	30.1	03	03.6	190	979.688	-. 059	+.004	979.633	979. 659	+.026
144. Aloxandria,	31	18.6	92	26.0	21	979.425	-. 007	+.009	979.427	979.429	+.002
145. Laurel, Mis8.	31	41.5	89	02.3	77	979.456	. 024	+. 011	979. 443	979.465	+.022
140. Rlchmond, VE		32.2			30	979.948	-. 000	+. 010	979. 949	879.960	
147. Fmporia	36	40.2	77		37	979.873	-. 011	+.015	979.877	979.898	+.021
148. Orpenville,		36.8	77	${ }^{22.3}$	17	979.783	-. 005	+. 019	979.797	979.787	-. 010
14. Wilmingt	34		77	56.6	-	979.666	-. 003	+.023	979.686	979.663	-.023
150. Cheraw, 8. C .		42.0	79	54	55	979.705	-. 017	+ .013	979.701	979.711	+.010

Principal facts for 219 gravity stations in the United States-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Number and name of station \& $\begin{array}{r}\text { Latit } \\ \\ \hline\end{array}$ \& tudo \& Longi

λ \& \& Elevstion H \& Theoretical gravtly

$$
\gamma_{0}
$$ \& Correc eleva. tor \& Correc tion for topography and compensation \& \[

$$
\begin{aligned}
& \text { Com- } \\
& \text { puted } \\
& \text { gravity } \\
& \text { at stas } \\
& \text { tion } \\
& \text { go }
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|}
\text { Olserved } \\
\text { grarity } \\
\text { at sta } \\
\text { tion } \\
0
\end{array}
$$
\] \& 90

\hline \& - \& \& - \& \& Mcters \& Dynes \& Dynes \& Dymes \& Dynes \& Dynes \& Dynes

\hline 151. Charlotte, N. C \& 35 \& 13.8 \& 80 \& 50.8 \& 228 \& 000.743 \& -0.070 \& +0.015 \& 979.694 \& 979.727 \& +0.033

\hline 152. Asheville, N.C \& 35 \& 35.9 \& 82 \& 33.3 \& 670 \& 979. 781 \& -. 207 \& +.026 \& \%7M63as \& W7. \& +.003

\hline 153. Cleveland, Tenn \& 35 \& 09.4 \& 9 \& 52.9 \& 263 \& 979.743 \& -. 081 \& +.012 \& 979.6.44 \& 929.63 \& -. 015

\hline 154. Winston-Salem, \& 38 \& 06.1 \& 80 \& 17 \& 888 \& 979.824 \& -. 088 \& +.012 \& 979. 748 \& 979. 718 \& -. 030

\hline 155. Knoxville, Tem \& \& 57.7 \& \& 55 \& 280 \& 979.812 \& -. 086 \& -. 001 \& 979.725 \& 979.712 \& -. 013

\hline 156. Bristol, Vs \& 36 \& 35.4 \& 82 \& 12 \& 514 \& 979.866 \& -. 159 \& +. 012 \& 979.719 \& 979.712 \& -. 007

\hline 157. Homestead, \& 25 \& 28.4 \& 40 \& 28.9 \& 4 \& 978.985 \& -. 001 \& +.029 \& [nomy \& 978.085 \& -. 028

\hline 158. Selring, Fla \& \& 30.2 \& \& \& 34 \& 979. 131 \& -. 010 \& +.023 \& 979. 144 \& 979. 135 \& -. 009

\hline 159. Titusville, Fla \& 28 \& 36. 7 \& 80 \& 48.4 \& 3 \& 979.214 \& -. 001 \& +.023 \& ต7\% \%va \& Q7ei 214 \& +.007

\hline 160. Leesburg, Fl \& \& 48.6 \& \& 53 \& 30 \& 979. 229 \& -. 009 \& +. 021 \& 979.241 \& 979.235 \& -. 006

\hline 161. Codar Keys, \& 29 \& 08.3 \& 8 \& 02.1 \& 8 \& 979.255 \& -. 001 \& +. 016 \& 979. 270 \& 979.257 \& -. 013

\hline 162. Maeon, Ga \& 32 \& 49.8 \& 83 \& 38 \& 99 \& 979.549 \& -. 031 \& +.007 \& 979. 525 \& 90.4.35 \& $+.027$

\hline 163. Albany, Ga \& \& 34.3 \& 84 \& 09 \& 58 \& 979. 446 \& -. 018 \& +. 011 \& 979.439 \& 978. 4 4\% \& +.010

\hline 164. Pensscola, \& \& 24.5 \& \& 12.9 \& 2 \& 979. 353 \& -. 001 \& +.014 \& 97\% 3x+1 \& 928 86 \& -. 000

\hline 165. Opelika, A \& \& 38.5 \& \& 22.8 \& 245 \& 979. 533 \& -. 076 \& +.017 \& 979.474 \& Whe 424 \& -. 018

\hline 166. Huntsville, Ala \& 34 \& 43.8 \& 88 \& 35.2 \& 200 \& 979.707 \& -. 062 \& +.003 \& O2. 685 \& 979. 633 \& -. 015

\hline 167. Arkansas City, \& 33 \& 36. 5 \& 91 \& 12.2 \& 44 \& 979. 613 \& -. 014 \& +.005 \& mavas \& 979. 000 \& -. 004

\hline 168. Memphis, Tenn \& 35 \& 08.8 \& 90 \& 03.3 \& 80 \& 979. 742 \& -. 025 \& +.002 \& 979. 719 \& 979.740 \& +.021

\hline 169. Mammoth Spring, \& 36 \& 29.3 \& 91 \& 27 \& 156 \& 979.857 \& -. 048 \& -. 002 \& 979.807 \& 979.828 \& +.021

\hline 170. Hopkinsville, Ky \& \& 51.6 \& \& 28 \& 176 \& 979.889 \& -. 054 \& +.006 \& 979.841 \& 964. 858 \& +.014

\hline 171. Danville, Ky \& \& 38.9 \& 84 \& 46.4 \& 300 \& 979. 958 \& - . 093 \& +. 011 \& 979.876 \& 979.855 \& -. 021

\hline 172. Clirton Forge \& \& 49.1 \& 79 \& 49.6 \& 325 \& 979.973 \& -. 100 \& -.003 \& 979.870 \& 979.844 \& -. 020

\hline 173. Oreenville, A \& 31 \& 49.4 \& 86 \& 38 \& 130 \& 979. 466 \& -. 040 \& +.016 \& Ons 482 \& W\%.4x9 \& -. 003

\hline 174. Birmingham \& 33 \& 30.8 \& 86 \& 48.8 \& 179 \& 979. 605 \& -. 055 \& +.011 \& 979.561 \& 979. 536 \& -. 025

\hline 175. Lexington, \& \& 47.2 \& 79 \& 26.6 \& 324 \& 979.970 \& -. 100 \& +.005 \& 979.875 \& \& -. 016

\hline 176. Prestonsburg, K \& 37 \& 40.6 \& 82 \& 45. 6 \& 193 \& 979. 961 \& -. 060 \& -. 004 \& 979. 897 \& 978.381 \& -. 016

\hline 177. Traverse City, Mich \& 44 \& 45.8 \& \& 37.2 \& 180 \& 980. 595 \& -. 056 \& +.002 \& 980. 541 \& man 30 \& +.009

\hline 178. Sency, Mich \& 46 \& 20.8 \& 85 \& 57.6 \& 223 \& 980. 738 \& -. 069 \& +.007 \& 980. 674 \& 980.685 \& $+.009$

\hline 179. Oconto, Wis \& 44 \& 53.2 \& \& 52.0 \& 181 \& 980. 606 \& -. 056 \& -. 001 \& 980.549 \& 980. 532 \& -. 017

\hline 180. Grand Rapids, \& \& 23.6 \& \& 40 \& 306 \& 880.561 \& . 094 \& $+.005$ \& 980. 472 \& We0.688 \& -. 034

\hline 181. Winona, Minn \& \& 03.2 \& \& 38.4 \& 201 \& 980. 530 \& -. 062 \& -. 006 \& Cex 1 193 \& (00. 463 \& +.023

\hline 182. Baldwin, W \& \& 57.8 \& \& 23 \& 342 \& 980.613 \& -. 106 \& +.006 \& 980.513 \& 980.471 \& -. 042

\hline 183. Cumberland \& \& 32.4 \& \& 00 \& 380 \& fenitica \& -. 117 \& +.008 \& 980, 556 \& 980.515 \& -. 041

\hline 184. Cambridge, Min \& \& 34.0 \& 93 \& 11 \& 303 \& 980.667 \& -. 094 \& +.002 \& 980.575 \& 980.556 \& -. 019

\hline 185. Bratnerd, Minn \& \& 21.3 \& \& 12.1 \& 367 \& 980.739 \& -. 113 \& +.003 \& 1000, 605 \& [60.64] \& +.020

\hline 186. Aberdeen, \%. Dak \& 45 \& 27.5 \& 98 \& 29.0 \& 396 \& 980. 657 \& -. 122 \& -. 005 \& 980 5x \& 980. 350 \& $+.020$

\hline 187. Faith, 8. Dak \& 45 \& 01.3 \& 102 \& 04 \& 786 \& 980. 618 \& -. 243 \& \& 980.381 \& P6144 \& +.023

\hline 188. Marmarth, N. D \& \& 18.4 \& 103 \& 53 \& 823 \& 980.734 \& -. 254 \& -. 002 \& 9011.478 \& 980.521 \& +.043

\hline 189. Towner, N. Dak \& 48 \& 20.3 \& 100 \& 26 \& 451 \& 980.917 \& -. 139 \& -. 004 \& 980. 774 \& 980.814 \& $+.040$

\hline 190. Crosby, N. Dak \& \& 54.7 \& \& 19 \& 598 \& 680.809 \& -. 185 \& $+.001$ \& 980.785 \& 980.810 \& +.025

\hline 191. Crookston, Minn \& 47 \& 46.2 \& \& 36 \& 260 \& 980. 866 \& -. 080 \& -. 006 \& 980.780 \& Wno. 70 \& +. 019

\hline 192. Poplar, Mont \& \& 06.8 \& 105 \& 12 \& 608 \& 980.897 \& -. 188 \& -. 009 \& 980. 700 \& 980.727 \& $+.027$

\hline 183. Miles City, Mon \& 46 \& 24. 2 \& 115 \& 50 \& 718 \& 980.743 \& -. 222 \& -. 020 \& 980.501 \& B-al 539 \& +.038

\hline 194. Huntley, Mont \& 45 \& 54.0 \& 108 \& 19.6 \& 919 \& 980.697 \& -. 284 \& -. 022 \& 980. 391 \& malala \& +.019

\hline 195. Lander, \& \& 50.0 \& \& 43 \& 1635 \& 980.420 \& -. 505 \& -. 028 \& 979.887 \& 979.914 \& $+.027$

\hline 106. Fairbault, Minn \& 44 \& 17.8 \& 93 \& 15 \& 301 \& 980.553 \& -. 093 \& . 000 \& 980. 460 \& 50064 \& $+.044$

\hline 187. 8t. James, Minn \& 43 \& 58.6 \& 13 \& 36 \& 330 \& 980. $5 \% 3$ \& -. 102 \& +.002 \& 980. 423 \& 980.437 \& +.014

\hline 188. Edgemont, 8. D \& 43 \& 17.7 \& 103 \& 49.2 \& 1006 \& 980.462 \& -. 329 \& -. 012 \& 980. 121 \& 980.183 \& +.062

\hline 199. Dawson, Minn \& 44 \& 55.8 \& \& 01 \& 323 \& 980.610 \& -. 100 \& -.003 \& 980. 507 \& 9-1.582 \& $+.025$

\hline 200. Cokato, Minn \& \& 04.5 \& \& 12 \& 319 \& 980. 623 \& -. 008 \& +.003 \& Fsines \& 980.542 \& +.014

\hline 201. Wasta, S, Dak. \& \& 04.2 \& 102 \& 25 \& 706 \& 080.532 \& -. 218 \& -. 013 \& 980. 301 \& Caxssa \& $+.038$

\hline 202. Moorcroft, Wy \& 44 \& 15.5 \& 104 \& 58 \& 1295 \& Eat 37 \& -. 400 \& +.005 \& \& Onc. 183 \& +.029

\hline 203. Duluth, Minn \& \& 47.0 \& \& 06.4 \& 216 \& 980.777 \& -. 067 \& $\pm .010$ \& Exa fre \& 980. 758 \& +.058

\hline 204. Usage, lowa \& 43 \& 16.8 \& 92 \& 47 \& 356 \& 980. 460 \& -. 110 \& +.007 \& 980.357 \& 980.339 \& -. 018

\hline 205. Randolph, Nebr \& 42 \& 23.0 \& \& 19 \& 515 \& 980.380 \& -. 159 \& +.005 \& 980.226 \& [50.236 \& $+.010$

\hline 206. Valentine, Nebr \& 42 \& 52.3 \& 100 \& 31 \& 785 \& 980.423 \& -. 242 \& +.004 \& Rex 185 \& 880.211 \& +. 026

\hline 207. Wheeling, \& 5 \& 04.0 \& 80 \& 43.4 \& 205 \& 980.172 \& -. 0.03 \& -. 003 \& 980. 106 \& Tiskema \& -. 021

\hline 208. Loon, Iowa \& 5 \& 44.6 \& 93 \& 43 \& 344 \& 980. 232 \& -. 106 \& $+.007$ \& 880.133 \& 980.133 \& . 000

\hline 209. Laurel Md \& 39 \& 06.3 \& 76 \& 51.0 \& 54 \& 980. 086 \& -. 017 \& +.007 \& 980.076 \& 980.118 \& +.042

\hline 210. Harcisburg, \& \& 10.0 \& 76 \& 53.1 \& 104 \& 980. 190 \& -. 038 \& $+.002$ \& 980. 160 \& [60\% 188 \& -. 021

\hline 211. Pittsburg, Fa \& 40 \& 27.4 \& 8 \& 00.6 \& 235 \& psazm \& -. 073 \& . 000 \& 05s. 183 \& 980. 118 \& -. 015

\hline 212. Rockville, Md \& 39 \& 04.9 \& 77 \& 08.8 \& 129 \& 980.084 \& -. 040 \& $+.013$ \& 980.057 \& 980.111 \& $+.054$

\hline 223. Upper Marl boro, \& 38 \& 49.0 \& 76 \& 45. 2 \& 12 \& 980.061 \& -. 004 \& +.007 \& 980.064 \& 980.085 \& +.021

\hline 214. Fariax, Va \& 38 \& 47.7 \& 77 \& 19.6 \& 115 \& 980.059 \& -. 035 \& +. 011 \& 980. 035 \& 934.079 \& $+.044$

\hline 215. Crisneld, \& 37 \& 58.8 \& 75 \& 50.7 \& I \& 979.987 \& . 000 \& +.019 \& Dincour \& crucas \& -. 021

\hline 216. Fredericksburg, Va \& \& 18.1 \& \& 27.5 \& 16 \& 980.015 \& -. 005 \& +. 004 \& D85. 14 \& P60.007 \& $+.013$

\hline 217. Dover, Del. \& 39 \& 09.7 \& \& 32.0 \& 12 \& 980. 092 \& -. 004 \& +.013 \& 980. 101 \& 980.199 \& -.002

\hline 218. North Tamarack, \& 47 \& 15.8 \& 88 \& 27. 6 \& 370 \& 980. 821 \& -. 114 \& +.020 \& 90.72\% \& 980. 766 \& +.039

\hline 219. Hagerstown, Md \& 39 \& 38.5 \& 77 \& 43.5 \& 166 \& Destish \& -. 051 \& +.006 \& \& mathes \& -. 041

\hline
\end{tabular}

GRAVITY FORMULA OF 1912.
In Special Publication No. 12 a new formula was derived which it was believed more nearly represented the conditions in the United States than did the Helmert formula of 1901. The new formula was found to be

$$
\gamma_{0}=978.038\left(1+0.005304 \sin ^{3} \phi-0.000007 \sin ^{2} 2 \phi\right)
$$

(See p. 25, Special Publication No. 12.)
The formula advocated by the writer in that publication was the above formula modified by making the second term 0.005302 , the same value as in Helmert's formula. The adopted 1912 formula is then

$$
\gamma_{\mathrm{o}}=978.038\left(1+0.005302 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right)
$$

The investigations made in 1912 were based upon the values of gravity in the United States computed by this formula.

In the preceding table the mean value of $g-g_{0}$ is +0.005 dyne and the probable error of a single value is ± 0.016 dyne. The residuals for the two Seattle stations (Nos. 53 and 56) are each -0.085 dyne, which is more than five times the probable error of a single value. This evidently indicates a very abnormal condition in the earth's crust near Seattle, and, it is believed, these two values should not be considered in taking means for the purpose of correcting the Helmert formula.

After rejecting the Seattle stations, the mean with regard to sign of $g-g_{\mathrm{c}}$ is $+0.006 \pm 0.0011$ dyne. As this is more than five times its own probable error, it is believed it represents a real error in the first term of the Helmert formula. In 1912 the mean value of $g-g_{0}$, after rejecting Seattle, was +0.008 dyne. This was the value also found by a least square solution. As the 1912 formula would be modified by only 0.002 dyne if the mean from the above table were applied as a correction to the Helmert formula, it was thought better not to change from the 1912 value.

Later on in this volume (pp. 122 to 129) there are given various gravity formulas derived from stations in the United States and other countries from several groupings and upon different assumptions.

The 1912 anomalies used frequently in this volume were computed by the 1912 formula which is given above, the depth of compensation being 113.7 km .

The 1916 anomalies were computed by the 1916 formula for the United States and with a depth of 60 km . This formula is shown on page 123. For convenience it is inserted below.

Formula of 1916:

$$
\gamma_{\mathrm{o}}=978.040\left(1+0.005302 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right)
$$

A plus sign of an anomaly means that at the station in question the observed intensity of gravity is in excess of that which would occur if the assumed conditions were true as to densities of the topography, and if the compensation were complete, uniformly distributed to the depth of compensation, and directly under the topographic features. If the anomaly is negative, the observed gravity is less than it would be if the ideal conditions obtained. A part of the anomaly is due to errors in the assumed densities, to departures from the depth of compensation with which the effect of the compensation is computed, and to erroneous values for the terms in the gravity formula. Errors in the assumed elevation of the station and in the contour maps used to compute the corrections for topography and isostatic compensation also cause a small part of the anomaly, as do also errors in the observations to determine the periods of the pendulums, and slight changes in the pendulums between standardizations.

An elaborate discussion of the various sources of error is given on pages 86 to 96 of Special Publication No. 10. It is shown that the average probable error of a computed value of gravity is ± 0.003 dyne. It is not believed to be necessary to repeat that discussion of errors in this volume. The only modification of the statements made in Special Publication No. 10 that seems to be needed is discussed in connection with the correction for elevation, pages 93-96.

PRINCIPAL FACTS FOR 42 STATIONS IN CANADA.

The Geodetic Survey of Canada has recently been actively engaged in establishing gravity stations within its area, and in response to a request from the Superintendent of the United States Coast and Geodetic Survey the Director of the Canadian Survey generously placed at the author's disposal the unpublished data regarding the 42 Canadian stations. These data are given in the following table. They are used in computing gravity formulas (see pp. 113 to 131) and in the gravity anomaly maps (fig. 11, in the pocket at the end of the volume) and in a study of the relations between the anomalies and the geologic formation.

The observations and the reduction for topography and isostatic compensation were made by F. A. McDiarmid, of the Geodetic Survey of Canada.

The observed values are on the Potsdam system, and the computed values are based upon Helmert's formula of 1901 and the gravity reduction tables given on pages 30 to 47 of Special Publication No. 10. The data are therefore similar to those for the United States stations given on pages 50-52 of this volume.

Principal facts for 42 stations in Canada.

Number and name of station	Latitude ¢	Longitude	Elevation	Theoretical gravity ro	Correction for elevation	Correotion for topography and station	Computed gravity at stan tion go	Observed gravity at stetion \#	$0-8$	Hayford anomaly, 1912
1. Ottaws	$\begin{array}{lll} 0 & 1 & \prime \prime \\ 55 & 23 & 39 \end{array}$	$\begin{aligned} & h m \\ & 5 \\ & 50252 \\ & \hline \end{aligned}$	Meters 83	Dynes 980.651	$\begin{aligned} & \text { Dynes } \\ & -0.026 \end{aligned}$	$\begin{aligned} & \text { Dynes } \\ & 0.000 \end{aligned}$	$\begin{aligned} & \text { Dynes } \\ & \text { gusez } \end{aligned}$	$\begin{aligned} & \text { Dynes } \\ & 980.615 \end{aligned}$	$\begin{gathered} D_{y n e s} \\ -0.010 \end{gathered}$	Dynes -0.018
2. Maniwak	462228	50355	169	980, 740	-. 052	-. 001	980. 687	Ysit 6	-. 002	-. 010
3. Kineston	441437	50555	79	980. 517	-. 024	+.008	980. 831	980. 527	-. 004	-. 012
4. Roberva	483054	44854	107	980. 933	-. 033	-. 015	980.885	980.865	-. 020	-.088
5. Tadouss	480825	43852	12	980.900	. 004	-. 004	980.892	Exisen	+.009	+.001
6. Portneuf.	464232	44735	59	980.770	-. 018	+.005	980. 757	980. 760	+.003	-.005
7. St. Jerome	454634	45600	107	980. 686	-. 033	+.006	980. 659	980.678	+.019	$+.011$
8. Ste. Anne	452427	45546	34	980. 653	-. 010	+.003	980.646	980.660	+.014	+.006
9. Mattawa	461843	51449	170	980.734	-. 052	-. 013	980.669	980.647	-. 022	-.030
10. Liskeard	473034	51841	194	950. 843	-. 080	-. 004	980. 779	mex.785	+.006	-. 002
11. Cochrane	490344	52405	277	980.983	-. 085	- . 004	(0x) 9	980. 880	-. 014	-. 022
12. Sault Ste.	463026	53718	186	95.0. 752	-. 057	-. 005	9.0. 690	980.677	-. 013	-. 021
13. Chaplean	475027	53337	430	9\%0. 872	-. 133	+. 012	980. 751	980.763	+. 012	+.004
14. Port Arthu	482600	55652	189	980.926	-. 058	-. 014	980. 854	280.817	-. 037	-. 045
15. Rose Point	451902	52010	183	980.644	-. 056	+.001	0.0 58	Sutios	+. 014	+.006
16. Whitby.	435243	51546	84	080.514	-. 028	-. 004	980, 484	980. 458	-. 028	-. 034
17. Woodstoc	430833	52308	299	980.448	-. 093	-. 002	men 351	980.349	-. 004	-. 012
18. Windsor	421916	53210	178	980.373	-. 055	. 000	980.318	980. 338	+.020	$+.012$
19. St. John	451603	42420	33	980.640	-. 010	+.016	980. 646	980. 660	+. 014	$+.006$
20. Moncton	460504	41909	14	950.713	-. 004	$+.014$	980.723	980.725	+.002	-.006
21. Charlottet	461355	41230	8	980.727	-. 002	+.013	980. 738	980. 730	-. 008	-. 016
22. Sylney	460821	40047	12	980.719	-. 004	+. 014	980.729	980, 728	-.001	-. 009
23. Truro.	452140	41306	18.	980.649	-.008	+. 014	980. 657	0-4 ${ }^{5}$	$+.002$	-.006
24. Halifax	444047	41415	9	980.587	-. 003	+.008	980.592	980.571	-.021	-. 029
25. Yarmou	435007	42429	\downarrow	980.510	-.003	+. 014	980.521	980.540	$+.019$	+.011
26. Woodstock, New Brunswic	460902	43018	56	980. 720	-. 017	+.008	950.711	980. 696	-. 015	-. 023
27. Edmundston	472211	43318	148	980. 830	-. 046	-. 010	980. 774	980. 771	-. 008	-. 011
28. Bathurst	473710	42236	5	9\%0. 853	-. 002	. 000	980. 851	[900.833	-. 018	-. 028
29. Perce.	483133	41651	6	980.935	-. 002	-. 002	980.931	980.947	+. 016	+.008
30. Kenora	494600	61800	0	981.046	-. 102	$+.018$	980.062	980.971	+.009	+.001
31. Winnipeg	495423	62832	231	981.057	-. 071	+.002	080 0×38	mam	-. 001	-. 000
32. Brandon.	495054	63947	366	981.053	-. 113	-. 002	980. 938	980. 953	+.015	+.007
33. Monse Jaw	502326	70207	541	981. 101	-. 167	+.003	980. 937	[xvys	+.003	-. 005
34. Medicine H	500225	72240	664	981.070	-. 205	-. 002	980.863	(8\%). 865	+.002	-. 006
35. Calgary.	510243	73815	1044	981.160	-. 322	-. 022	(ax) 815	[9883	$+.004$	-. 004
36. Banft	511053	74218	1376	881.172	-. 425	-. 012	980. 735	980. 750	+. 015	$+.007$
37. Field	512342	74559	1239	981. 190	-. 382	-. 080	980. 748	980. 745	-. 003	-. 011
38. Revelstok	505948	75247	453	981. 155	-. 140	-. 080	[8x	9*0). 900	-. 035	-. 043
39. Kamloops	504042	80118	352	981.127	$-.109$	-. 073	980. 945	980. 944	-. 001	-. 009
40. North Ben	495217	80548	152	981.055	-. 047	-. 122	980. 8×86	980. 846	. 000	-. 008
41. Glacier.	511544	74958	1248	981.179	-. 385	-. 066	980. 728	¢0173	+.010	+.002
42. Vancou	491649	81227		881.002	-. 002	-. 048	000 961	880.946	-. 008	-. 016

PRINCIPAL FACTS FOR 73 STATIONS IN INDIA.
In the office of the Survey of India the Hayford reductions have been made for 73 stations in that country. The data regarding them are published in a report of the Survey of India, title of which is given in a footnote on page 45.

The corrections for elevations as given in the Indian report were computed by the formula:

$$
\text { Correction for elevation }=-\frac{2 g H}{R}
$$

in which a mean value of the radius of the earth, R, is taken as $20,900,000$ feet. H is the elcvation of the station in feet. These corrections are given in the column headed "Correction for elevation, Indian," in the table following. In the column headed "Correction for elevation, U. S. C. \& G. S." are given the corrections computed by the formula :

$$
\text { Correction for elevation }=-0.0003086 H
$$

in which H is the elevation of the station in meters. The maximum difference is 0.006 dyne at station No. 95, Sandakphu. The results by the second formula have been used in the discussions in this volume, as this formula is somewhat more accurate in theory. ${ }^{a}$

The reductions for topography and compensation were computed in much the same way as is done by the United States Coast and Geodetic Survey. For zones 18 to 1 the methods and constants are identical. For the inner zones which are lettered from \mathbf{A} to \mathbf{O} a slightly different gravitation constant was used. It is 657×10^{-10} for C. G. S. units, while the one used by the United States Coast and Geodetic Survey is 667.3×10^{-10}. The depth of compensation used is 70 miles, 112.65 km ., instead of 113.7 km . The compensation was distributed from sea level instead of from the surface of the earth. For ocean areas the Indian Survey distributed the compensation from the bottom to a depth of 70 miles (112.65 km .) below the surface of the water, while the United States Coast and Geodetic Survey distributes the compensation from the ocean bottom to a depth of 113.7 km . below the ocean bottom.

These changes in the method of computing the topography and the compensation do not make any differences which need be considered in our discussions. We may consider the India data similar to those which we have for the United States, Canada, and Europe, all of which are based upon identical methods and constants.

In the fourth column from the last in the following table are given the gravity anomalies based upon the Hayford reduction and the Helmert formula of 1901 with 978.030 as the first term and with the Indian corrections for elevation of station. In next to the last column are given the anomalies which are similar in every way to those just mentioned except that the United States correction for elevation is applied instead of the Indian correction. The theoretical values of gravity at sea level as computed with the Helmert formula are given in the fifth column.

The observed values given in the following table are based upon the value of 979.063 dynes for Dehra Dun. The value of gravity at that station as given in the latest report of the International Geodetic Association is 979.065 dynes.

[^4]Principal facts for 78 stations in India.

Number and name of station	Latitude ¢	Longitude	$\begin{gathered} \text { Elevar } \\ \text { tion } \\ H \end{gathered}$	Theoretical gravity ro	$\begin{aligned} & \text { Correc- } \\ & \text { tion } \\ & \text { eleva- } \\ & \text { tion } \\ & \text { (Indil } \\ & \text { an) } \end{aligned}$	Correothon for topogiaplyy and compen- sation sation	Com- puted gravity at station $\%$ $\%$	Observed gravity at station	(Indlan)	Correction for elevar tion (U. E. C . \& G. 8.$)$	$\begin{aligned} & \text { (U.S.C.C. } \\ & \left.(U G .)_{0}\right) \end{aligned}$	Науford anvm1912 1912
			eters	Dynes	Dynes	Dynes	Dynes	Dynes	Dynes			
1. Agra	2710	780107	163	979. 107	-0.050	-0.018	979.039	056	+0.017	-0.050	+0.	0.009
2. Aligar	275332	780031	187	979. 160	057	-. 021	979.082	979.075	-. 007	-. 058	-. 0	-. 014
3. Allaha	252555	8155	88	978.962	-. 027	-. 021	978. 934	978.943	+.009	-. 027	+.009	$+.001$
4. Amgao	212131	808	315	978.715	-. 097	-. 001	978. 617	978.614	-.003	-. 097	-. 003	-. 011
5. A	205550	774540	342	978.689	. 105	-. 001	978. 583	978.609	+.026	-. 108	+.027	+.019
6. Arrah	253410	8439	57	978.992	-. 018	-. 028	978.946	978.918	-. 028	-. 018	-. 023	-. 036
8. Asig	212810	761750	633	978.721	-. 194	+.027	978.554	978.584	+.030	$-.185$	+.031	+. 023
9. Bad!	215410	775410	641	978.748	-. 197	+.018	978.569	978. 607	+.038	-. 188	+.039	+.031
12. Bhop	231558	7725	497	978.835	-. 153	+.007	978. 689	978.711	+.022	-. 153	$1+.022$	+.014
18. Bilasp	220353	8212	268	978.758	. 082	-. 008	978.688	978.681	$+.013$	-. 083	+.014	+.006
14. Bina	241041	781146	413	8	-. 127	. 000	978.769	978.795	$+.026$	-. 127	+.026	+.018
15. Buxa	253442	8359	63	978.992	-. 019	-. 026	978.947	Trasus	$\div .014$	-. 018	-. 014	-. 022
16. Chat	241240	882327	20	978.898	-. 006	-. 019	978.873	978.878	+.005	-. 008	+.005	-. 0
17. Colab	185345	724847	10	978.571	-. 003	. 000	978. 568	978.631	+.063	-. 003	+.063	+.055
18. Cutta	202905	855201	\%	978, 662	. 009	. 000	978.653	978.659	+.006	-. 009	+.006	. 002
10. Daltong	2402	8404	215	978.886	. 066	-. 018	978.802	978.827	+. 025	-. 086	+.025	$+.017$
20. Damoh	234954	7926	370	978.873	-. 114	-. 005	978. 754	978.758	+.004	-. 114	+.004	-. 004
22. Dehre D	301929	780315	(10)	979.347	-. 210	-. 080	979, 057	979.063	+.006	-. 210	+.006	-. 002
24. Dholpur	264201	775447	176	979.072	-. 054	. 015	979.003	1920.109	- -. 005	-. 054	-. 005	-. 01
26. Ellichp	211820	773040	401	978.711	. 123	. 001	978.587	978.618	+.031	. 124	+.032	+. 024
29. Glaya	244742	\%00	110	978.938	-. 034	-. 023	978.881	978.884	+.003	-. 034	+.003	-. 005
30. Gesupu	283302	774203	211	979.210	-. 065	-. 025	979.120	979.125	+.005	-. 065	+.005	-. 003
31. Goons	243848	771913	478	978.928	-. 147	+.007	978. 788	978.807	+.019	-. 148	+.020	+.012
32. Gorakhp	264458	8323	78	979.076	-. 024	-. 046	979. 006	978.936	-. 070	-. 024	-. 070	-. 078
33. Gwali	261357	781249	201	979.039	-. 062	-. 012	978. 965	978.958	-. 007	-. 062	-. 007	$-.015$
35. Hathra	2736	7803	179	979.139	-	-. 020	979.0	979.075	$+.011$	-. 055	+.011	+.003
37. Hoshanga	2245	7743	305	978, 802	-. 094	-. 010	978,698	978.719	+.021	-. 094	+.021	+. 013
38. Jacobabs	281634	682705	56	979.189	-. 017	-. 024	979.148	979.186	+.038	-. 017	+.038	+.030
39. Jalgaon	210000	753350	232	978.693	-. 071	-. 009	978.613	978.633	+.020	-. 071	+.020	+.012
40. Jalpaigu	263116	884413	82	979.060	. 025	. 093	978.942	978.922	. 020	-. 025	-. 020	-. 028
41. Japla	2431	8400	144	978.920	. 044	. 022	978.854	978.856	+.002	-. 044	$+.002$	-. 006
42. Jhansi	2527	783343	262	978.983	. 080	-. 007	978.896	978.910	+.014	-. 081	+.015	+.007
43. Jubbulp	230854	7959	447	978.828	-. 137	-. 002	978.689	978.719	+.030	-. 138	+.031	+.023
44. Kaliana	293055	773906	247	979.284	-. 076	-. 047	979. 161	979.154	$-.007$	-. .076	-.007	-. 015
45. Kalianp	240711	773817	637	978.892	-. 165	+. 011	978.738	978.777	$+.039$	-. 166	$+.040$	+.032
48. Katni.	2350	80	38	978.873	117	. 006	978.750	7	+.007	118	+.008	00
50. Khand	214930	762130	309	978.743	-. 095	-. 003	978.645	978.692	+.047	-. 09	+.047	+.039
51. Khurja	281419	775153	198	979.186	-. 061	. 024	979.101	979.082	-. 019	-. 061	-. 019	-. 027
52. Kismapu	250226	882829	34	978.955	-. 011	-. 027	978.917	978.956	+.039	-. 011	+.039	+.031
55. Lalitpur	244129	7824	365	978.931	-. 112	-. 003	978.816	978.814	. 002	-. 113	. 001	-. 009
58. Madras	1304	80.14	6	978.294	-. 002	+.040	978.332	978.279	-. 053	-. 002	-. 053	. 061
59. Maiha	2415	8048	354	978.902	-. 109	-. 006	978. 787	978. 784	-. 003	-. 109	-. 003	-. 011
60. Majhav	281746	8358	67	979.043	-. 021	-. 037	978.985	978. 928	-. 057	-. 021	-. 057	-. 065
65. Mho	223310	754540	580	978.789	-. 178	+.024	978.635	978. 620	-. 015	-. 179	-. 014	-. 022
	313137	742232	216	979.442	. 066	-. 033	979.343	979.383	+. 040	-. 067	$+.041$	+.033
67. Moghal S	251703	8306		972	-. 024	. 024	8. 924	8.919	005	. 024	-. 005	-. 013
70. Monghyr	252253	8628	47	978.979	-. 014	-. 031	978.934	978.909	-. 025	-. 014	-. 025	-.033
71. Montgo	303947	730618	170	979. 373	-. 052	-. 019	979. 302	979. 321	+. 019	-. 052	$+.019$	+.011
72. Mortakka	221320	760250	176	978. 768	-. 054	-. 016	978.698	978. 703	+. 005	-. 054	$+.005$	-. 003
73.	222340	755840	282	978.779	-. 087	-. 009	978.683	978.664	-. 019	-. 087	-. 019	-. 027
75. Mussoorie (
Back)	302735	780432	2110	979.357	-. 649	+. 032	978. 740	978.793	+.053	. . 651	$+.055$	$+.047$
77. Muttra	272825	774148	171	979.129	-. 053	-. 019	979.057	979.072	+.015	-. 053	+. 015	+.007
78. Muzaffar	260705	8525	55	979. 031	-. 017	-. 038	978.976	978.934	-. 042	-. 017	-. 042	-. 050
82. Ootacamun	112437	764203	2254	978.232	-. 692	+.183	977.723	977.735	+. 012	-. 696	+.016	+.008
83. Pathankot	321633	753903	332	979.503	-. 101	-. 088	979.314	979.237	c-. 076	-. 102	$-.075$	-.083
84. Pendr	224841	8200	005	978.804	-. 187	+. 013	978.630	978.638	+.008	-. 188	+.009	+.001
87. Quetta	301215	670041	1622	979.337	-. 517	+.024	978.844	978.851	+.007	-. 519	$+.009$	+.001
88. Rajpur	211356	8141	304	978.707	-. 093	+.001	978.615	978.612	-. 003	-. 094	-. 002	-. 010
89. Rajpu	302412	780547	1012	979.333	-. 311	-.066	978.976	979.002	+. 026	-. 312	+.027	+.019
91. Ranch	232305	8519	661	978.843	-. 203	+.021	978.681	978.691	+.030	-. 204	+.031	+.023
93. Roorke	295220	775359	\%	979.311	-.081	-. 057	979.173	979.129	-. 044	-. 081	-. 044	-. 052
94. Salem	114005	780910	289	978.241	-. 089	+.012	978. 164	978.116	-. 048	-. 089	-. 048	-. 056
95. Sanda	270606	880015	3586	979. 102	-1.101	+.141	978.142	978.190	+.048	-1.107	+.054	$+.046$
96. Sasar	245721	8359	104	978.949	-. 032	-. 023	978.894	978.903	+.009	-. 032	+.009	+.001
97.	235147	78	536	978.875	-. 165	$+.010$	978.720	978.731	+. 011	-. 165	+.011	+.003
98. Seoni	220529	7729		978.780	100	+. 016	978. 586	978.622	+.036	- . 191	+.037	+.089
99. Shahp	221130	775410	392	978.766	-. 120	-. 006	978. 640	978, 683	+.023	-. 121	+.024	+.016
100. Sibi.	293248	675231	132	979.286	-. 040	-. 067	979. 179	979.119	- - . 059	-. 041	-. 058	-. 086
101. Siligu	264147	882450	118	979. 072	-. 036	-. 110	978.926	978.887	-. 039	-. 036	-. 039	-. 047
103. Sipri	252552	773925	467	978.982	-. 144	+. 009	978.847	978.876	+.029	-. 144	+.029	+.021
106. UjJatm.	231100	7547	491	978.830	-. 151	+.009	978.688	978.677	-. 011	-. 152	-. 010	-. 018
107. Umar	233137	8054	457	978.853	-. 140	-. 002	978.711	978.740	+.029	-. 141	+.030	+.022
108. Yercaud	114656	781229	1369	978.245	$-.420$	$+.116$	977.941	977.808	3	-. 422	31	. 039

a Theanomalies forstations 24,83 , and 100 are reproduced as given in the original source, although the data as taken from there to three decimals of a dyne and repeated here give an anomaly differing by 0.001 dyne. It is supposed that the discepancy is due to additional decimals used in the computation but omitted in the published statement. The anomalies in other columns correspond to the values given in this column.

PRINCIPAL FACTS FOR 40 STATIONS NOT IN THE UNITED STATES PROPER, CANADA, OR INDIA.

The following table contains the principal facts for 40 stations outside of Canada, India, and the United States proper. The data for stations Nos. 1 to 36, inclusive, except the correction for topography and compensation and the resulting g_{c}, were obtained from the reports of the International Geodetic Association. The correction for topography and compensation of Nos. 1 to 27 was computed by the United States Coast and Geodetic Survey for depth of compensation of 113.7 km . in the usual way, and for Nos. 28 to 36 it was computed by Mr. Niethammer from Hayford's tables, and is taken from the "Procès Verbal de la 56 me séance de la commission géodésique Suisse," Neuchâtel, 1910. Stations 37 to 40 are from a publication of the Royal Italian Geodetic Commission, "Determinazioni di Gravita relativa compiute nel 1912," by Reina and Cassinis, Rome, 1913. The correction for topography and isostatic compensation is there computed for a depth of 120 km . and contains the error noted in the footnote on page 98 of this publication. The error has been corrected and an approximate allowance made to change the depth to 113.7 km . The combined effect of these two changes was to reduce the anomaly in each case by 0.001 dyne.

The theoretical gravity throughout the table is based on Helmert's formula of 1901, Potsdam system.

It is intended that the several tables of principal facts (pp. 50 to 57) shall contain data for all well-observed gravity stations on land known to this Survey for which corrections, by Hayford's method, for topography and isostatic compensation have been computed for the depth 113.7 km . In the Comptes Rendus de la 17 me Conférence géodésique de l'Association Géodésique Internationale, IIme Volume (Rapports Speciaux) pages 41 and 404, are given lists of corrections for topography and compensation for stations chiefly in Africa that are not included in this publication owing to lack of information as to the assumptions and mothods underlying the computation.

Principal facts for 40 stations not in the United States proper, Canada, or India.

Number and name of station	Latitude	Longitude λ	Elevation	Theoretical gravity \%o	Correction for elevation	Correction for topography and compensation	Com- puted gravity at station g_{0}	Observed gravity at station 9	$9-90$	Hayford ${ }_{1912}$ anomaly,
1. Stlliser)och (Stelvio Pass), 2. Franzenhöhe, Austria... 3. Schneekoppe, Germany 4. Alte Bruch, Germany 5. Brocken, Germany	$\begin{aligned} & 4631.8 \\ & 4832.0 \\ & 5044.2 \\ & 5045.7 \\ & 5148.0 \end{aligned}$	$\begin{aligned} & \hline . \\ & 10 \\ & 10 \\ & 1027.4 \\ & 1544.0 \\ & 1544.6 \\ & 1037.6 \end{aligned}$	Melers 2760 2188 168 917 1140	Dynes 480.705 981.132 981.134 $\times 1.250$	Dynes $=0.852$ $=.675$ $=.293$ $=.253$ $=$.	$\begin{aligned} & \text { Dynes } \\ & +0.152 \\ & +.087 \\ & +.110 \\ & +.060 \\ & +.088 \end{aligned}$	Dynes 990. 055 980.167 980.747 980.911 -anom	$\begin{aligned} & \text { Dynrg } \\ & 980.045 \\ & 980.153 \\ & 980.776 \\ & 980.930 \\ & 981.015 \end{aligned}$	$\begin{aligned} & \text { Dynes } \\ & -0.010 \\ & +.014 \\ & +.029 \\ & +.019 \\ & +.053 \end{aligned}$	$\begin{gathered} \text { Dynes } \\ =0.018 \\ \mp .022 \\ +.021 \\ +.045 \end{gathered}$
6. Seharfenstein, Germany. 7. Naye, Switzerland. 8. Villeneuve, Switzerland. 9. Chaumont, Bwitzerland. 10. Neuenburg (Neuchatel),	$\begin{aligned} & 5150.0 \\ & 4626.0 \\ & 4624.1 \\ & 4701.4 \\ & 4700.1 \end{aligned}$	$\begin{array}{r} 1036.0 \\ 658.7 \\ 655.7 \\ 6.57 .1 \\ 657.3 \end{array}$	$\begin{array}{r} 1087 \\ 1987 \\ 376 \\ 1018 \\ 487 \end{array}$	$\begin{aligned} & 981.229 \\ & 980.746 \\ & 980.743 \\ & 980.799 \\ & 980.797 \end{aligned}$	$\begin{aligned} & =.192 \\ & =.613 \\ & =.116 \\ & =.150 \end{aligned}$	$\begin{array}{r} \pm .041 \\ \pm .074 \\ \pm .074 \\ \pm .026 \end{array}$	$\begin{aligned} & 981.078 \\ & 980.207 \\ & 001.51 \\ & 980.510 \\ & 980.621 \end{aligned}$	981.130 980.233 980.572 980.554 980.653	$\begin{aligned} & +.052 \\ & +.028 \\ & +.019 \\ & +.044 \\ & +.032 \end{aligned}$	$\begin{aligned} & +.044 \\ & +.018 \\ & +.011 \\ & +.036 \\ & +.024 \end{aligned}$
11. Gornergrat, Switzerland. 12. Riffelberg, Switzerland. 13. Zermatt, switzerland. 14. Belalp, switzerland. 15. Brig, Switzerland.	4559.0 4559.6 4601.5 4822.9 4619.7	746.8 745.3 745.0 7 7 80.6 8 8	$\begin{array}{r} 3016 \\ 2566 \\ 1603 \\ 2132 \\ 683 \end{array}$	$\begin{aligned} & 980.705 \\ & 980.705 \\ & 980.708 \\ & 980.741 \\ & 980.737 \end{aligned}$	$\begin{aligned} & =.931 \\ & =.792 \\ & =.495 \\ & =.211 \end{aligned}$	$\begin{array}{r} \pm .165 \\ \pm .122 \\ \pm .007 \\ \pm .079 \end{array}$	$\begin{aligned} & 979.939 \\ & 980.035 \\ & 980.206 \\ & 980.162 \\ & 980.441 \end{aligned}$	979.992 980.090 980.250 980.172 980.437	$\begin{aligned} & +.053 \\ & +.055 \\ & +.044 \\ & +.010 \\ & -.004 \end{aligned}$	$\begin{aligned} & +.015 \\ & +.047 \\ & +.036 \\ & +.002 \end{aligned}$
16. Fggishorn, Switzerland 17. Flareh, Switzerland. 18. St. Marrice, Switzerland. 19. IIonoluhu, Hawaiian Istands 20. Mauna Kea, Hawaiian Islands	$\begin{aligned} & 4825.2 \\ & 4824.2 \\ & 4613.0 \\ & 2118.1 \\ & 1949.2 \end{aligned}$	$\begin{array}{r} 806.8 \\ 808.1 \\ 700.2 \\ 15751.8 \\ 15528.8 \end{array}$	$\begin{array}{r} 2187 \\ 1049 \\ 422 \\ 6 \\ 3981 \end{array}$		$\begin{aligned} & =.675 \\ & =.324 \\ & =.130 \\ & -1.0029 \end{aligned}$	+.088 $\pm .043$ +.091 +.162	$\begin{aligned} & 980.156 \\ & 980.376 \\ & 980.505 \\ & 978.871 \\ & 977.863 \end{aligned}$	$\begin{aligned} & 980.169 \\ & 980.1378 \\ & 980.512 \\ & 978.946 \\ & 978.069 \end{aligned}$	$\begin{aligned} & +.013 \\ & +.000 \\ & +.007 \\ & +.206 \end{aligned}$	$\begin{aligned} & \pm .005 \\ & \pm .004 \\ & +.001 \\ & +.198 \end{aligned}$
21. Hachinohe, Japan. 22. St. (ieorges, Bermuda e .. 23. Jampsinwt, St. Helena 3 . 24. Sorvagen, Norway. 25. Kala-i-Chumb, Turkestan	$\begin{gathered} 4031 \\ 3221 \\ -1555 \\ 6753.6 \\ 3827.3 \end{gathered}$	$\left.\begin{array}{cc} 141 & 30 \\ 61 & 5 \\ 5 & 43.7 \\ 13 & 42 \\ 70 & 46.5 \end{array} \right\rvert\,$	$\begin{array}{r} 21 \\ 2 \\ 10 \\ 19 \\ 1345 \end{array}$	980.212 979.509 978.418 982.478 691.681	$\begin{aligned} & =.006 \\ & =.001 \\ & =.006 \end{aligned}$	$\begin{aligned} & +.049 \\ & +.218 \\ & +.177 \\ & +.016 \\ & -.086 \end{aligned}$	$\begin{aligned} & \text { mov. } 25 \\ & 979 \\ & 978.728 \\ & 982.488 \\ & 979.528 \end{aligned}$	979.806 978.712 982.622 979.462	$\begin{array}{r} +.104 \\ +.080 \\ +.120 \\ \pm .134 \\ -.066 \end{array}$	$\begin{array}{r} +.096 \\ \pm .072 \\ \pm .112 \\ \pm .074 \end{array}$
28. St. Paul Island, Alaska a 27. St. Michsel, Alasks e 2x. Sitten swiizerland. 23. Visp, Switzerland. 30. Iselle, Switzerland.	$\begin{aligned} & 57 \quad 07.3 \\ & 6328.5 \\ & 4814.1 \\ & 4617.6 \\ & 4612.5 \end{aligned}$	$\begin{array}{r} 17016.6 \\ 16202.4 \\ 721.5 \\ 753.0 \\ 812.1 \end{array}$	$\begin{array}{r} 10 \\ 10 \\ 514 \\ 649 \\ 630 \end{array}$	$\begin{aligned} & \text { U81. } 608 \\ & 982.178 \\ & 980.728 \\ & 980.733 \\ & 980.725 \end{aligned}$	$\begin{array}{r} -.003 \\ =.000 \\ =.200 \\ =.104 \end{array}$	$\begin{aligned} & \pm .041 \\ & =.004 \\ & =.082 \\ & =.090 \end{aligned}$	981.720 982.174 080. 487 980.443 980.426	981.726 982.192 980.480 988.441 980.430	$\begin{aligned} & \pm .006 \\ & \pm .018 \\ & \hline .007 \\ & +.002 \end{aligned}$	$\begin{aligned} & \mp .002 \\ & \pm .010 \\ & =.015 \\ & =.010 \end{aligned}$
31. Gsteig, Switzerland... 32. Simplon Hospiee, Swliz 33. Grand Bt. Bernard, 8 35. Sanetsch, Switzerland 35. Chanrion, Switzerland	$\begin{aligned} & 4623.2 \\ & 4814.9 \\ & 4552.1 \\ & 4619.3 \\ & 4558.3 \end{aligned}$	$\begin{array}{ll} 7 & 16.2 \\ 8 & 01.9 \\ 7 & 10.4 \\ 7 & 17.2 \\ 7 & 22.9 \end{array}$	$\begin{aligned} & 1185 \\ & 1998 \\ & 2473 \\ & 2041 \\ & 2435 \end{aligned}$	980.742 980.729 980.694 080.736 980.700	$\begin{aligned} & =.366 \\ & =.617 \\ & =.763 \\ & =.751 \end{aligned}$	$\begin{aligned} & +.001 \\ & +.076 \\ & +.131 \\ & +.085 \\ & +.113 \end{aligned}$	980.375 980.188 080.082 980.191 980.032	$\begin{aligned} & 980.396 \\ & 980.202 \\ & 980.072 \\ & 980.211 \\ & 980.107 \end{aligned}$	$\begin{aligned} & +.021 \\ & +.014 \\ & +.010 \\ & +.020 \\ & +.045 \end{aligned}$	$\begin{aligned} & +.013 \\ & +.006 \\ & +.002 \\ & +.012 \\ & +.037 \end{aligned}$
3f. Schwarzsee, Switzerla 3i. Remm, Italy 34. Florence (Arcetri), It 39. Leghorn, Italy........ 40. Genoa, Italy	4550.5 4153.5 43 43.2 432.2 4429.2	$\begin{gathered} 742.7 \\ 1229.7 \\ 1115.2 \\ 1018.5 \\ 85.5 \end{gathered}$	$\begin{array}{r} 2582 \\ 49 \\ 184 \\ 8 \\ 88 \end{array}$	980.705 980.335 980.503 980.4×3 980.560	$\begin{aligned} & =.797 \\ & =.015 \\ & =.057 \\ & =.032 \end{aligned}$	$\begin{aligned} & \pm .125 \\ & =.012 \\ & =.023 \\ & =.020 \end{aligned}$	$\begin{aligned} & \text { Gov. ax } \\ & 9 \times 0.308 \\ & 980.423 \\ & 989 . \\ & 980.510 \end{aligned}$	$\begin{aligned} & 980.090 \\ & 980.367 \\ & 980.491 \\ & 980.534 \\ & 980.557 \end{aligned}$	$\begin{aligned} & +.057 \\ & +.059 \\ & +.068 \\ & +.071 \\ & +.047 \end{aligned}$	$\begin{aligned} & +.049 \\ & +.051 \\ & +.060 \\ & +.063 \\ & +.039 \end{aligned}$

[^5]
Chapter III.-COMPARISON OF APPARENT ANOMALIES AT STATIONS IN THE UNITED STATES BY THE HAYFORD AND OLD METHODS OF REDUCTION.

In the following tables $g_{0}{ }^{\prime \prime}-\gamma_{0}$ and $g_{0}-\gamma_{0}$ have the same meanings as in the reports of the International Geodetic Association.

The quantity $g_{0}{ }^{\prime \prime}-\gamma_{0}$ is the apparent anomaly when the Helmert formula of 1901 and the Bouguer reduction are used. The Bouguer formula has been very generally applied in reducing pendulum observations to the level of the sea. This formula is $d g=+\frac{2 g H}{r}\left(1-\frac{3 \delta}{4 \Delta}\right)$ where $d g$ is the correction to observed gravity, g is gravity at sea level, H is elevation above sea level, r is radius of the earth, δ is density of matter lying above sea level, and Δ is mean density of the earth. The first term takes account of the distance from the earth's center, and the second term of the vertical attraction of the matter lying between sea level and the station, on the supposition that the latter is located on an indefinitely extended horizontal plain. Wherever the topography about a station departs materially from this conditon of a horizontal plain a third term must be added to the above formula, being a correction to the second term or to observed gravity on account of such irregularities. The Bouguer reduction thus takes no account of isostatic compensation and neglects all curvature of the sea-level surface, the topography being treated as if it were standing on a plain of indefinite extent.

The quantity $g_{0}-\gamma_{0}$ is the apparent anomaly when the Helmert formula of 1901 is used in connection with the so-called reduction to sea level in free air only $(0.0003086 \mathrm{H})$. This reduction ignores both the topography and the isostatic compensation. It takes account simply of the increased distance of the station from the earth's center when the station is above sea level.

A comparison of the anomalies by the Hayford method, on the one hand, with those by the two older methods, as shown in the columns headed $g_{0}{ }^{\prime \prime}-\gamma_{0}$, and $g_{0}-\gamma_{0}$, on the other hand, will therefore show the merits of the Hayford method of reduction in compariosn with the Bouguer and the free-air methods.

This comparison of the Hayford method with the Bouguer and free-air reductions is made because the Bouguer reduction postulates a total lack of compensation and a consequent high rigidity of the earth's crust while the free-air method assumes that each piece of topography is completely compensated for at zero depth. Besides, the Bouguer and free-air mothods are those which have been most generally used.

The Hayford anomalies in the following table are based upon the Coast and Geodetic Survey formula of 1912 in which the first term is 978.038 .

Anomalies by Hayfond，Bouguer，and free－air reductions．

Number and name of station	Anomaly			Number and name of station	Anomaly		
	$\begin{aligned} & \text { Hayford, } \\ & 1912 \end{aligned}$	Bouguer $\left(90^{\prime \prime}-\gamma_{0}\right)$	In free air $\left(g_{0}-\gamma_{0}\right)$		$\begin{aligned} & \text { Hayford, } \\ & 1912 \end{aligned}$	Bouguer $\left(g_{0}{ }^{\prime \prime}-\gamma_{0}\right)$	$\begin{aligned} & \text { In free air } \\ & \left(g_{0}-\gamma_{0}\right) \end{aligned}$
1．Key West，Fla． 2．West Palm Beach，Fla 3．Punta Gorda，Fla． 4．Apalachicola，Fla 5．Now Orleans，Ls．	$\begin{array}{r} +0.005 \\ +.018 \\ +.010 \\ -.000 \\ -.013 \end{array}$	$\begin{array}{r} +0.048 \\ +.057 \\ +.038 \\ +.023 \\ +.008 \end{array}$	$\begin{aligned} & +0.048 \\ & +.057 \\ & +.038 \\ & +.023 \end{aligned}$	76．Bismarck，N．Dak 77．Hinsdale，Mont． 78．Sandpoint，Idaho． 70．Boise，Idaho． 80．Astoria，Oreg．	$\begin{aligned} & +0.002 \\ & +.029 \\ & +.002 \\ & \pm .008 \\ & -.013 \end{aligned}$		$\begin{aligned} & +0.005 \\ & +.020 \end{aligned}$
						-0.052 -.053	
						－． 105	$\pm .034$
						－． 117	－．026
						＋．003	＋．003
6．Rayville，L	＋．016	$\begin{array}{r} \pm .029 \\ \pm .006 \\ \pm .049 \end{array}$	$\begin{aligned} & \pm .052 \\ & \pm .006 \\ & \pm .060 \\ & =.009 \\ & -.003 \end{aligned}$	81．Sisson Cal． 82 Rock Springs，Wyo．．．．．．．．．．．．．．．．． 83．Paxton，Nebr． 81．Washington，D．C．（Bureau of Standards）． 85．North Hero，Vt．	$\begin{array}{r}\text {（ } \\ \hline \pm .010 \\ \hline .013\end{array}$	－． 103	+.013+.020+.004
8．Galveston，Tex	－．009						
9．Laredo，Tex．	\pm						
10．Austin，Tex．（capit	． 008	$=.022$			$+.037$		+.057+.000
11．Austin，Tex（university）	－． 010	－． 023	－． 003		＋．001	＋．046	
12．Mc．Alester，Okla	$\simeq .027$	$\pm .045$	－． 018		$\begin{aligned} & +.006 \\ & +.021 \end{aligned}$		$+.046$
13．Columbia，	+.030 +.026	+.030 +.017	＋ +.039 +.040			$\mp .011$	
15．Atlanta，	－．023	＋． 030+.017	$\pm .001$	88．Wilson，N．	二．010	－．014	－．004
16．MoCormick	＋．015		＋． 035	90．Virginia Beach，Va．	－． 048	$=.015$	$=.012$
17．Charlesto	－．021	+.003+.003+.021	+.003+.023	91．Durham，N，C ．．a．．	＋． 036	＋． 045	＋+.058+.035
18．Beaufort，							
18．Charlottesvil	－． 013	－．021	+.003+.059	92．Fernandi	＋．010	＋．036	
20．Deer Park，M				93．Wilmer，			＋．035
21．Washington，D．C．（Coast and Geodetic Survey Office）	＋．037		$+.04$	95．New Madrid，Mo．．．．．．．．．．．．．．．．．	＋．001	＋．001	＋． 010
22．Washington，D．C．（Smithson－	＋	+.048+.049		90．Mena，Ark．．．．．．．．．．．．．．．．．．．．．	－． 052	-.066-.005	+.029+.004
ian Institution	＋．039		$+.050$				
23．Philadelphia，	$\begin{array}{r} +.011 \\ +.022 \end{array}$	$\begin{array}{r} .000 \\ +.037 \end{array}$	＋．003	88．Alpine，Tex． 99．Farwell，Tex	$\pm .021$	－． 088	+.062 +.003
25．Prunceton，	$\pm .022$	$\begin{array}{r} +.037 \\ -.004 \end{array}$	＋．002	100．Guymon，0kia．．．．．．．．．．．．．．	－． 017	－． 110	＋．010
20．Hobol	＋．024	＋．039	＋． 040	101．Helenwood，Tenn． 102．Cloudland，Tenn． 103．Hughes，Tenn． 104．Charleston，W：Va 105．State College，Pa．	＋．040	＋．015	+.063+.142+.032
27．New Yor	＋． 022	$\pm .037$	$\begin{array}{r}+.041 \\ +.006 \\ \hline\end{array}$		＋．029		
25．Worceste	＋．．020					二．004	
20．Boston，Ma		+.024+.022	＋．026		－．024		＋．032
30．Cambridge，	＋．005					－． 038	－． 003
31．Calais，		$+.006$	＋． 010	106．Fort Kent，Me 107．Prentice，Wls． 108．Fergus Falls，Minn 109．Sheridan，Wyo． 110．Boulder，Mont．	$\begin{gathered} -.013 \\ \pm .024 \\ \pm .006 \\ \pm .015 \end{gathered}$	－． 021	－． 004
32．Ithaca，	． 023	$\begin{array}{r} \text { 1.033 } \\ -.016 \end{array}$	$\begin{array}{r} +.010 \\ +.005 \end{array}$			－． 005	$+.042$
33．Cleveland， O	－． 0031					－． 034	＋．003
34. Cincinnati，O		－． 034	＋．．0079			－． 116	＋．009
35．Terre Haute，	－． 009	－． 016				－． 181	－． 014
36．Chicago，	$\begin{array}{r} -.007 \\ =.005 \\ =.005 \\ \hline .0114 \end{array}$	$=.012$	＋+.008+.006	111．Skykomish，Wash 112．Olympia，Wash．．． 113．Heppner，Oreg 114．Truckee，Cal． 115．Winnemucca，Nev．	$\begin{aligned} & -.028 \\ & \pm .033 \\ & =.027 \\ & =.009 \end{aligned}$	$\begin{aligned} & =.087 \\ & \pm .026 \\ & =.093 \\ & =.162 \end{aligned}$	$\begin{aligned} & -.067 \\ & \pm .029 \\ & \pm .026 \\ & \pm .005 \end{aligned}$
87．Madison，W							
38．8t．Louls，M		－． 014	＋．004				
39．Kansas City		－． 038	－． 009				
40．Ellsworth，		． 029	＋．016				
41．Wallace，K	$\begin{gathered} -.012 \\ \pm .007 \\ \pm .021 \\ +.020 \end{gathered}$	． 105	－． 004	116．Ely，Nev． 117．Guernsey，WYy． 118．Pjerre，S．Dak 119．Fort Dodge，Iowa． 120．Keithsburg，III．	－． 021	－． 207	$+.007$
42．Colorado 8prin		． 188	－． 01046		$+.036$	－． 113	＋．028
43．Pikes Peak，		－． 204	＋． 216		＋．014	－． 089	＋．009
44．Denver，Colo		－． 182	－． 023		＋．015	－． 011	＋．025
45．Gunnison，C		－． 229	＋．027		－． 008	－． 018	－．003
46．Grand Junction，Col	$+.024$	－． 138	－． 019	121．Grand Rapids，Mich． 122．Angola，Ind． 123．Albany，N． \mathbf{Y} ． 124．Port Jervis，N，Y 125．Atlantic City，N．J．	+.002+.011+.043$=.023$	－． 008	a+.013+.030
47．Oreen River，Utah	＋．021	－． 180	－． 056			－． 001	
48．Pleassnt Valley Junctio		$=.146$	$\pm .0363$			－． 048	－． 041
49．Balt Lake City，Utal	$\begin{array}{r} +.010 \\ \pm .002 \end{array}$					－． 035	－． 022
80．Grand Canyon，		－． 208	＋．044			＋．003	$+.003$
51．Norris Ceyser Basfo，Wyo	＋． 021	－． 177	$+.060$	123．Bridgehampton，N．Y 127．Chatham，Mass： 128．Rockland，Me． 129．Lancaster，N．H． 130．Whitehall，N． \mathbf{Y} ．	$-.022$	$+.005$	
52. Lower Geyser Basin，Wy	$\pm .001$	＝．193	＋．035		－． 014	＋．018	＋． 018
53．Seattio，Wash．（univer	二．093				－． 015	＋．003	＋． 004
54．San Francisco，Cal		＋．019	＋．105		－． 018	－． 031	－．003
56．Mount Hamilton，C	－． 008	＋．003			－． 038	－． 047	－． 043
56．Seattie，Wash．（high sc	－． 093	－． 111	－． 103	131．Little Falls，N．	－． 024	－． 038	－． 023
57．Iron River，	＋．038	＋．009	＋．060	132．Watertown	－． 025	－． 032	－． 016
58．Ely，Minn ．．．．．．	＋．023	－． 010	＋．039	138．Southport，	－． 030	－． 047	－． 018
60．Mitchell，S．Dak	+.019 +.001	$=.008$	＋ +.018 +.003	134．Erie，	－． 027	－． 040	－． 018
							． 022
01．Sweetwater，	－． 020	－． 084	－． 012	136．Columbus，Oh	－． 012	－． 028	－． 003
	＋．031	＝．003	＋．052	137．Indianapolis	＋．001	－． 012	＋．012
64．Nogales，Ari	＋．007	－． 111	$+.016$	138．Springtield	－． 016	－． 023	－． 003
6．Yuma，Aris．	－．000	$\overline{+}+.182$	－．004	140．Joplin，	＋．011	－． 012	＋．081
					＋．016	－． 009	＋．025
68．Compton，Cal．	－． 050	－． 011	－． 012	141．Fort Smith，Ark	－． 016		
67．Goldfield，N	－． 013	－． 168	＋．022	142．Texarkana，Ar	＋．011	$+.009$	＋．020
68．Yavapai，Ar	＋．001	－． 162	＋．043	143．Hot Springs，A	＋．018	＋．009	＋．030
70．Gallup，N．Mex．			－． 098	144．Alexandria，	－． 006	＋．008	＋．011
70．Gallup，N．Mex．	－． 013	－． 211	＋．009	145．Laurel，M	$+.014$	＋． 025	＋．083
72．Las Vegas，N．M	$+.003$	－． 180	＋．028	146．Richmond，	$+.003$	$+.018$	
72．Shamrock，Te	＋．032	－． 031	＋．047	147．Emporia，	＋．013	＋．．032	＋． 036
73．Demison，Tex．	＋．005	－． 012	＋．012	148．Greenville	－． 018	＋．007	$+.009$
75．Mrneapolis，	$+.059$	$+.034$	＋．062	149．Wilmingto	－． 031	－．001	．000
75．Lead，S．Dak	$+.052$	－． 072	$+.104$	150．Cheraw，	＋．002	$+.017$	＋．．023

Anomalies by Hayford, Bouguer, and free-air reductions-Continued.

Number and name of station	Anomaly			Number and name of station	Anomaly		
	$\begin{gathered} \text { Hayford, } \\ 1012 \end{gathered}$	Bouguer $\left(0_{0}{ }^{\prime \prime}-\gamma_{0}\right)$	$\begin{aligned} & \text { In free air } \\ & \left(g_{0}-\gamma_{0}\right) \end{aligned}$		$\begin{gathered} \text { Hayford, } \\ 1912 \end{gathered}$	Bouguer $\left(g_{0}^{\prime \prime}-\gamma_{0}\right)$	$\begin{aligned} & \text { In free air } \\ & \left(\rho_{0}-\gamma_{0}\right) \end{aligned}$
151. Charlotte, N. C	+0.025	+0.023	+0.048	188. Aberdeen, B. D	+0.012	-0.029	+0.015
152. Asherille, N. C	-. 005	-. 045	+.029	187. Faith, S. Dak.	+.015	=.058	+.029
153. Cleveland Tenn	-. 023	-. 011	-. 013	188. Marmarth, N. D	+.033	-. 051	$+.041$
154. Winston-salem,	-.038	-.049	-. 018	189. Towner, N. Dak	+.032 +.017	=.014	+.038 +.028
155. Knoxville, Tenn	. 021	-. 045	-. 014	190. Crosby, N. Dak.		-.011	
156. Bristol	-. 015	-. 052	+.005	191. Crookston, Minn	+.011	-. 016	$+.013$
157. Homestead	-. 036	+. 001	+.001	198. Poplar Mont	+.018	-. 050	+.018
158. Sebring, rla	-. 017	+.011	+. 014	193. Miles City Mont	$+.030$	-. 061	+. 018
150. Titusvile, Fla	-. 001	+.030	+.030	194. Huntley Mon	+.011	-. 105	-. 003
100. Leesburg, Fla	-. 014	+. 012	+. 015	195. Lander, W yo	$+.019$	-. 182	-. 001
161. Cedar Keys, Fla	-. 021	+.003	+.003	196. Faribault, Mmn	+. 036	+. 011	+. 044
162. Mreon, Gs	+.019	+.023	+.034	197. 8t. James, Minn	+.006	-. 020	+. 016
163. Albany, Ca.	+.002	+.015	+.021	198. Edgemont, S. D	+.054	-. 087	+.050
164. Pensscola,	-. 014	+.008	$+.008$	199. Dawson, Minn	$\pm .017$	-. 014	$+.022$
165. Opelika, Ala	-. 026	-. 028	-.001	200. Cokato, Minn.	$+.006$	-. 019	+. 017
168. Huntsville, Ala.	-. 023	-. 034	-. 012	201. Wasta, S. Dak	$+.030$	-. 052	$+.025$
167. Arkansas City, A	-. 012	-. 004	$+.001$	202. Moorcroft W y	$+.021$	-. 109	$+.034$
168. Memphis, Tenn.	+. 013	$+.015$	$+.023$	203. Duluth Minn	$+.050$	$+.025$	+.048
169. Mammoth Spring,	+.013	+.002	$+.019$	204. Osage, lowa	-. 026	-. 050	-. 011
170. Hopkinsville, KY.	+.006	+.001	$+.000$	205. Randolph,	$+.002$	-. 042	$+.015$
171. Danville, Ky	-. 030	-. 043	-. 010	206. Valentine, Nebr	+. 018	-. 058	+.030
172. Clifton Forge	-. 034	-. 085	-. 029	207. Wheeling, W. Va	-. 029	-. 047	-. 024
173. Greenville, Als	-. 011	-. 001	+. 013	208. Leon, Iowe	-. 008	-. 031	+.007
	-. 033	-. 034	-. 014	209. Laurel, M	+.034	$+.043$	+.049
175. Lexington, ${ }^{\text {a }}$	-. 024	-. 047	-. 011	210. Harrisburg,	. 028	-. 031	-. 018
176. Prestonsburg, KY	-. 024	-. 042	-. 020	211. Pittsburg, P	-. 023	-. 041	-. 015
177. Traverse City	$+.001$	-. 009	+. 011	212. Rockville, M	$+.046$	$+.053$	$+.067$
178. Seney, Mich	$+.003$	-.008	+. 016	213. Upper Marlboro,	+. 013	+.027	+.028
179. Oconto W1s	-. 025	-. 038	-. 018	214. Fairfax Va	+.036	+. 042	+.055
180. Grand Rapids, Wis	-. 042	-. 083	-. 029	215. Crisfold,	029	. 002	. 002
181. Winons, Minn.	$+.015$	-. 006	$+.017$	216. Fredericksburg, Va	+.005	+.015	$+.017$
182. Baldwin, Wis.	$-.050$	-. 074	-. 036	217. Dover, Del	-. 010	+.010	+.011
183. Cumberland,	-. 049	-. 074	-. 033	218. North Tamarack, M	+.031	+.019	+.059
184. Cambridge, Min	-. 027	$=.051$	-.017	219. Hagerstown, Md.	. 048	-. 063	-.035
185. Brainerd, Minn.	+. 012	-. 018	$+.083$				

The mean values of the anomalies with and without regard to sign are shown in the following table:

	Andmaly		
	$\begin{gathered} \text { Hayford, } \\ \text { INI } \end{gathered}$	Bouguer	In froe sir
Mean with regard to sign 219 stations...	-0.003	-0.037	+0.012
Mean without regard to sign 219 stations........................ Mean with regard to sign 217 stations (Seatte stations omitied)	-.020	. 050	+.103
Mean with regard to sign 217 stations (Seattle stations omitted)- ${ }^{\text {M }}$ (${ }^{\text {Mean }}$ Without regard to sign 217 stations (Seattle stations omitted)	-. 002	-. 038	$+.013$

The mean without regard to sign is much larger by the free air and the Bouguer than the Hayford reductions and for the Bouguer it is so large as to show that the condition upon which it is based, namely, that of a rigid earth, is very far from the truth.

There are only two Hayford anomalies greater than 0.059 dyne, and those are at Seattle, Wash., at stations so close together that they should be considered really only one station. The maximum free-air anomaly is at Pikes Peak, Colo. (No. 43), and is +0.216 dyne. The maximum Bouguer anomaly is -0.229 at Gunnison, Colo. (No. 45).

The following table gives for the three methods the number of anomalies which fall within certain limits:

Number of anomalies of different magnitudes.

An inspection of the data in this table shows that the anomalies by the Hayford 1912 method are distributed in fair agreement with the law of distribution of accidental errors. There is no indication of any decided systematic error for those anomalies. On the other hand, the distribution of the anomalies by each of the older methods of reduction departs greatly from the law of distribution of accidental errors and indicates that there are substantial systematic errors present.

GRAVITY ANOMALY MAPS.

The 1912 Hayford anomalies for the 219 stations in the United States and the 42 stations in Canada are shown in figure 11. The contours were drawn mechanically. The whole area covered by the stations was laid out in triangles, each triangle having as its apexes three contiguous stations. In all cases where there was a choice those stations were selected which gave most nearly an equiangular triangle. The points on the contours were determined by interpolations along the triangle sides between the stations at their ends. There are several places where sharp angles in the contours were taken out and the contours rounded, but these are of very minor importance.

The map shows no relations between the anomalies and the topography except for coast topography, but it does seem to show some relation between the anomalies and the geologic formation. Along the coast where the geologic formation is generally Cenozoic the anomaly areas are mostly negative. The large area of Paleozoic formation which extends westward from Pennsylvania is mostly negative, while the large Mesozoic and pre-Cambrian areas in the Dakotas, Minnesota, and in Montana and Wyoming tend to be positive. (Soe fig. 17.)

Figure 15 shows the gravity anomaly contours in the vicinity of the District of Columbia. These are so intricate that they could not be shown well on the small scale of figure 11.

Figure 12 shows the 1916 Hayford anomalies and the gravity contours for the 219 stations in the United States, and figure 16 the 1916 anomalies and contours for the area surrounding the District of Columbia. These two maps differ very little from figures 11 and 15 showing the 1912 contours.

Figure 13 shows the Bouguer anomalies at the 219 stations in the United States and the anomaly contours. Little comment is needed in regard to this map. It was constructed in the same way as the 1912 and 1916 Hayford anomaly maps. It shows in a very impressive manner the close relations between the Bouguer anomalies and the character of the topography.

Figure 14 shows the free-air anomaly contours for the United States. This shows in a striking manner the relation between the free-air anomalies and the elevations of the stations.

Figures 13 and 14 seem to prove conclusively that the earth's crust is not rigid and also that it is not highly plastic. On the other hand, figures 11 and 12 for the Hayford anomalies prove that the condition of isostasy with the compensation distributed to a considerable depth is very near the truth.

AGREEMENT AS TO POSITIVE AND NEGATIVE AREAS DEDUCED FROM GRAVITY AND FROM DEFLECTION DATA.

In figure 18 are shown the 1912 Hayford anomalies for the 219 stations in the United States and the differences between the observed and the computed values of the deflection of the vertical at many astronomic stations used by Hayford. ${ }^{\text {a }}$ There are also shown a number of ovals inclosing areas in each of which, according to Hayford, the density of the material in the earth's crust is abnormal. They were drawn by him before any results of the gravity reductions were available.

In some of these areas gravity stations have been established, and in no case is there a conflict in the sign of the area as indicated and the sign of the gravity anomaly. There are many of the gravity stations not within these positive and negative areas as shown on the illustation which agree with the deflections of the vertical in their locality.

The two classes of data supplement each other and frequently give a rather definite idea as to the direction from the station of the area under which the cause of a deflection of the vertical is located. For instance, if an arrow in figure 18, which shows by its length the size of the unaccounted-for deflection, is close to a gravity station, the latter being in prolongation of the resultant deflection, the gravity anomaly by its sign will indicate whether the plumb line is attracted in the direction of the arrow or repelled from the opposite side. It may be said that the gravity and deflection data are in general in close accord.
a Supplemental Investigation in 1909 of the Figure of the Earth and Isostasy.

Chapter IV.-RELATION BETWEEN THE GRAVITY ANOMALIES AND THE TOPOGRAPEY.

A severe test of the reasonableness of a method of reduction of gravity stations is whether the anomalies are different in size and sign, on an average, for different characters of topography.

There are given below five tables, for as many different characters of topography, which contain the anomalies by four methods of reduction. The first method may be called the Hayford, 1912. In this method isostasy is considered complete, and the compensation is assumed to be directly under the station and uniformly distributed to a depth of 113.7 km . The formula used in this method for computing the theoretical gravity at a station is what is called the United States Coast and Geodetic Survey 1912 formula, in which the gravity at the equator is given as 978.038 dynes. The reciprocal of the flattening is $1 / 298.2$ (the Helmert value of 1901 ; see p. 113). The second method is similar to the first one, except that the depth of compensation is 60 km ., and the formula used gives a value of gravity at the equator of 978.040 dynes. Each of these methods is based on the theory of isostasy. The values of the depth and the equatorial gravity used in the second method were derived from a solution of all the data in the United States, from which was obtained the United States Coast and Geodetic Survey 1916 formula for the United States. The derivation of this formula is given on page 123.

The third method is the Bouguer, in which topography is considered, but the isostatic compensation is not. It postulates a rigid crust of the earth. The fourth method is the free air, in which neither the topography nor the compensation is taken into account. It postulates a very plastic crust with the compensation at zero depth. The Helmert formula of 1901 was used in computing the theoretical gravity at the latitude of the stations for the Bouguer and the free-air methods.

At the end of the five tables there is given a table of the mean anomalies with and without regard to sign.

HAYFORD, BOUGUER, AND FREE-AIR ANOMALIES, ARRANGED IN GROUPS ACCORDING TO
TOPOGRAPHY.
Twenty-seven coast stations, in the order of their distances from the 1000-fathom line.

Number and name of station	Distance from lath line	Anomaly.			
		Hayford, 113.7 km	Haytord 1916; dep 60.0 km	$\begin{aligned} & \text { Bouguer } \\ & \left(\theta_{0}^{\prime \prime}-\gamma_{0}\right) \end{aligned}$	In freeair ($g_{0}-\gamma_{0}$)
$=$	Kiometers858512013014515	$\begin{array}{r} =0.023 \\ =.021 \\ =.018 \\ +.048 \end{array}$	$\begin{aligned} & =0.010 \\ & =.008 \\ & \hline .0010 \\ & \hline . .019 \end{aligned}$	$\begin{aligned} & +0.019 \\ & +.023 \\ & \pm .003 \\ & +.0015 \end{aligned}$	$\begin{aligned} & +0.030 \\ & \pm .033 \\ & \pm .003 \\ & +.015 \end{aligned}$
54. San Francisco, Cal 18. Beaurort N.					
18. Beaufort, N.C.... 80. Astoria, Oreg.					
80. Virginia Beach, Va .					
92. Fernandina, Fla ...					
1. Key West, Fla	$\begin{aligned} & 150 \\ & 160 \\ & 180 \\ & 180 \\ & 185 \end{aligned}$	$\begin{aligned} & \pm .005 \\ & \pm .023 \\ & \pm .0027 \\ & =.022 \end{aligned}$	$\begin{array}{r} \pm .015 \\ \pm .0 .018 \\ \hline .0018 \\ \hline .010 \end{array}$	$\begin{aligned} & +.048 \\ & +.0039 \\ & +.009 \\ & +.0005 \end{aligned}$	$\begin{aligned} & \pm .018 \\ & \pm .003 \\ & +.060 \\ & \pm .006 \end{aligned}$
155. Allantle City, N.					
128. Brid fehampton, N.					
215. Crisfeld, Md.......					
149. Wilmington, N. C.	100190195210225	$=.081$$=.014$$=.014$$=.0013$.000	-. 024	-. 001	. 000
164. Pensacola, Fla			- . 010	+.008	
127. Chatham, Mas			-.007	+.018	+.018
5. New Orleans, La			-.010	+.008	+.008
4. Apalachifota, Fl			+.004	+.023	+.023
27. New York, N,	225230230243203	$\pm .022$	+.025	+.037	$\begin{array}{r}\text { + } \\ +.041 \\ \pm .040 \\ \hline .042\end{array}$
27. Hoboken, N. ${ }^{\text {d }}$					
66. Compton, Cal........				$\pm \pm .0078$	
161. Cedar Keys, Fla.....					+.062
3. Punta Gorda, Fla	280300300305330	$\begin{aligned} & \pm .010 \\ & \pm .005 \\ & +.005 \\ & \hline-.000 \end{aligned}$	+.017	$+.038$	+.038
29. Boitom, Mass.				+.024	
30. Carmbridge, Mass			+.009	+.022	+.023
17. Charleston, S. C.			=.016	+.003	+.003 +.006
159. Titusville, Fla.	330350	$=.0011$	$\pm .007$	$+.030$	$\begin{aligned} & +.030 \\ & +.004 \end{aligned}$
128. Rockland, He					
Mean with regard to sign. Mean without regard to sign		-. 0018	$-\begin{array}{r} .003 \\ .017 \end{array}$	$+.017$	$\begin{aligned} & +.017 \\ & .022 \end{aligned}$

Forty-six stations near the coast, in the order of their distances from the open coast.

Number and name of station	Distance from the open const	Anomaly			
		$\begin{gathered} \text { Haylord, } \\ 1912 ; \\ \text { depth, } \\ 113.7 \mathrm{~km} \end{gathered}$	Fayford, 1916; depth, 60 km	$\begin{aligned} & \text { Bouguer } \\ & \left(0_{0}^{\prime \prime}-\gamma_{0}\right) \end{aligned}$	$\begin{gathered} \text { In free air } \\ \left(\rho_{0}-\gamma_{0}\right) \end{gathered}$
	Rilometers205060656565	$\begin{aligned} & =0.036 \\ & =.008 \\ & =.019 \\ & =.044 \end{aligned}$	$\begin{aligned} & =0.028 \\ & =.007 \\ & =.016 \\ & =.042 \end{aligned}$	$\begin{array}{r} +0.001 \\ +.006 \\ =.004 \\ +.027 \end{array}$	$\begin{aligned} & +0.001 \\ & +.010 \\ & +.002 \\ & +.018 \\ & +.011 \end{aligned}$
157. Homestand, Fls					
31. Calais, Me.......					
93. Wilmer, Alla...					
217. Dover, Del.					
23. Baltimore, Md.	$\begin{array}{r} 75 \\ 85 \\ 85 \\ 90 \\ 100 \end{array}$	$\begin{aligned} & =.011 \\ & =.020 \\ & \pm .022 \\ & \hline .033 \end{aligned}$	$\begin{aligned} & =.008 \\ & =.015 \\ & \pm .008 \\ & \pm .027 \end{aligned}$	$\begin{array}{r} .000 \\ +.014 \\ \pm .012 \\ \pm .037 \end{array}$	$\begin{aligned} & +.003 \\ & +.006 \\ & +.015 \\ & +.039 \\ & -.022 \end{aligned}$
23. Worcester, Mass					
160. Leeshurs, Fla.					
24. Philadelphia, Pa					
124. Port Jervis, N.					
158. Sebring Fla.	$\begin{aligned} & 110 \\ & 130 \\ & 142 \\ & .145 \\ & 150 \end{aligned}$	$\begin{aligned} & =.017 \\ & =.018 \\ & +.010 \\ & +.002 \end{aligned}$	-. 010	+. 011	+.014+.009
148. Greenville, N			-. 012	+.007	
81. Bisson, Cal			+.009	$\underline{-.103}$	+.013
147. Emporis Vs			+.016	+.032	+.036
150. Cheraw, S. C			+.005	+.017	$+.023$
146. Richmond, Va	150	$+.003$	$+.005$	+.018+.027	+.021+.028
213. Upper Marlboro, Md	150160	$\underline{+.013}$	$\pm \begin{aligned} & \pm .016 \\ & \pm .009\end{aligned}$		
173. Greenville, Als				-. 001	+.013+.049
209. Laurel, Md..	160170	$\begin{aligned} & +.034 \\ & +.037 \end{aligned}$	+.036+.088	+.043	
21. Washington, D. C. (Coast and Geodetic Survay office)					+.049
22. Washington, D. C. (Smithsonian Institution)	170	$+.039$	$+.040$	$+.049$	++.050+.021
163. Alhany, Ga.	170	++.002+.014	+.0105+.016	+.015	
145. Laure, Miss.					+.033+.057
84. Washington, D. C. (Bureau of Standards)	175	$\begin{aligned} & +.037 \\ & +.005 \end{aligned}$	+.039+.007	+.046	
216. Fredericksburg, V8					+.017
144. Alexandria, La	19	-. 006	-. 005	+.008	+.011
212. Rockville,	100	+.048	+.048+.037	+.008+.053+.042	
214. Fairfax, Va.	200	+. 036			+.005+.058
91. Durham, N. C	210215	+.036	+.038	$\pm .045$	
9. Laredo, Tex					+.058
65. Yuma, Ariz	$\begin{aligned} & 220 \\ & 901 \\ & 220 \\ & 220 \\ & 235 \\ & 245 \end{aligned}$	$\begin{array}{r}\text { + } \\ +.009 \\ \hline .012\end{array}$	$+.006$	+.001	+.007+.005
97. Nacogdoches,			=.041	-. 048	
123. Albany, N. Y		-. 043			$\begin{array}{r}+.041 \\ +.035 \\ \hline .003\end{array}$
16. McCormick, B. C		+.015	+. 017	+.017	
10. Austin, Tex. (capitol)		-.008	-.008	-. 021	
11. Austin, Tex (university)	$\begin{aligned} & 245 \\ & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	-. 010	-. 010	-. 023	-.003
19. Charlottesville, Va		-. 013	-. 011	-.021	
151. Charlotto, N. C		+.025	+.029	+.023	+.048
219. Hagerstown, Md				-. 053	
162. Macon, Ga		+.019	+.021	+.023	$+.034$
165. Opelika, Ala	$\begin{aligned} & 285 \\ & 305 \\ & 305 \\ & 310 \\ & 315 \end{aligned}$	$\begin{aligned} & =.026 \\ & =.023 \\ & \pm .017 \\ & \pm .013 \end{aligned}$	$\begin{aligned} & =.020 \\ & =.020 \\ & \pm .017 \\ & \pm .014 \end{aligned}$	$=.028$$=.033$$=.010$$=.021$	$\begin{aligned} & =.001 \\ & =.010 \\ & \pm .001 \\ & \pm .004 \end{aligned}$
32. Ithaca N. Y.					
94. Alicervile, Ala					
62. Kerrville, Tex					
106. Fort Kent, Mo					
6. Rayville, La	325	+. 016	+. 017	$+.029$	$+.082$
Mean with regard to sign.... Mean without regaxd to sign		$\begin{array}{r} -.001 \\ .021 \end{array}$	$+.002$	$\begin{array}{r} +.004 \\ .025 \end{array}$	$\begin{array}{r} +.017 \\ .023 \end{array}$

Eighty-ight stations in the interior and not in mountainous regions, arranged in the order of elevation.

Number and name of station	Elevation	Anomaly.			
		Hayford, 1912; depth, 113.7 km	$\begin{gathered} \text { Hayford } \\ \text { 1916, dopth, } \\ \text { en } \mathrm{km} \end{gathered}$	Bouguer $\left(0_{0}^{\prime \prime \prime}-\gamma_{0}\right)$	In free air $\left(g_{0}-\gamma_{0}\right)$
	Meters				
167. Arkanses City Ark.		-0.012 +.001	-0.012 -.002	-0.004 +.001	+0.001 +.010
188. Memphis Tenn..	80	+.013	+.012	+.015	+.023
88. Wilson, N, Y...	87	-. 010	$\pm .013$	-.014	-.004
13. Little Rock, Ark	89	+.030	+.027	$+.080$	+.039
142. Texarkana, Ark	90	$+.011$	+.009	$+.009$	$+.020$
87. Potsdam, N. Y.	130	+.021	+.021	+.011	$+.025$
111. Fort Smith, Ark.	135	-. 016	-. 018	-. 030	-. 015
132. Watertown, N. Y .	147	-. 025	-. 024	-. 032	-. 016
35. Terre Haute, Ind.	151	-.009	-. 010	-. 016	dus
38. St. Louls, Mo.	154	-. 005	-. 007	-. 014	$+.004$
169. Mammoth Spring, Arls	156	+. 013	+.013	+.002	$\pm .019$
120. Keithshurg, 111.	167	-.008	-. 008	-. 018	-. 003
170. Hopkinsvilie, Ky	178	+.006	$\pm .007$	$\pm .001$	+.020
89. Alpena, Mich.....	178	-.023	-. 019	-. 032	

Eighty-ight stations in the interior and not in mountainous regions, arranged in the order of elevation-Continued.

Thirty－six stations in mountainous regions and below the general level，arranged in the order of their distances beloro the general level．

Number and name of station	Average elevationwithin 100 miles of Station minus of station	Elevation of station	Anomaly			
			$\begin{aligned} & \text { Hayford, } \\ & \text { 1912, } \\ & \text { depth, } \\ & 13.7 \mathrm{~km} \end{aligned}$	$\begin{aligned} & \text { Hayford, } \\ & \text { 1906; } \\ & \text { deth, } \\ & 60 \mathrm{kmm} \end{aligned}$	$\begin{aligned} & \text { Bouguer } \\ & \left(0_{0}^{\prime \prime \prime}-\gamma_{0}\right. \end{aligned}$	In free air （ $\rho_{0}-\gamma_{0}$ ）
	$\begin{gathered} \text { Meters } \\ 30 \\ 32 \\ 33 \\ 52 \\ 112 \end{gathered}$	3 reters199051435812951716	$\begin{aligned} & -0.013 \\ & -.015 \\ & \hline+.021 \end{aligned}$	-0.001 $=.007$.007 $\pm .024$	-0.211$=.052$$=.038$$=.109$	$\begin{aligned} & +0.009 \\ & \pm .003 \\ & +.003 \\ & +.003 \end{aligned}$
156．Bristor，Va．．．						
105．state College，Pa						
202．Moorcroft，						
67．Goldalld，Ne						
153．Cloveland，Tenn	$\begin{aligned} & 123 \\ & 125 \\ & 126 \\ & 157 \\ & 167 \end{aligned}$	$\begin{aligned} & 28 \\ & 104 \\ & 324 \\ & 325 \\ & 325 \end{aligned}$	$=.023$$=.029$$=.023$+.001	$\begin{aligned} & =.020 \\ & \text { =:027 } \\ & =.027 \end{aligned}$	$\begin{aligned} & =.041 \\ & =.031 \\ & =.075 \\ & =.004 \end{aligned}$	$\begin{array}{r} =.013 \\ =.019 \\ =.002 \\ =.000 \end{array}$
210．Harrisburg，Pa．						
172．Clifton Forge						
88．North Mero，Vt．						
176．Prestonsburg，	180198200200205205		$\begin{aligned} & =.024 \\ & =.022 \\ & +.0020 \\ & +.007 \end{aligned}$	－． 022	＝．042	二．020
131．Little Falls，N．				－． 021		
135．Knoxville，Te					＝．035	$\pm .014$
63．El Paso，Tex				＋．05	－． 111	
108．Edgamont，S．Dak．	$\begin{aligned} & 208 \\ & 201 \\ & 200 \\ & 306 \\ & 306 \\ & 307 \end{aligned}$	$\begin{gathered} 1008 \\ 508 \\ 38 \\ 19 \\ 19 \end{gathered}$	$\begin{aligned} & \pm .054 \\ & =.027 \\ & \hline+.0393 \end{aligned}$		－． 067	＋．050
113．Heppner，Oreg				二．030	＝．003	二．028
112．Olympia，Wash．				＋．029	$\pm .028$	＋．029
110．Boalder，Mont．			－． 015	－． 008	$\pm .181$	－． 014
111．Skykomish，Wash．	$\begin{aligned} & 322 \\ & 324 \\ & 346 \\ & 378 \\ & 379 \end{aligned}$	$\begin{aligned} & 200 \\ & 1322 \\ & 1311 \\ & 1150 \\ & 1910 \\ & 1010 \end{aligned}$	-.028+.036+.009+.032+.013	$\begin{aligned} & \mp .019 \\ & \pm .005 \\ & \hline+.0065 \\ & +.020 \end{aligned}$	$\begin{aligned} & =.087 \\ & =.1130 \\ & =.110 \\ & =.101 \end{aligned}$	$\begin{aligned} & \mp .087 \\ & \pm .002 \\ & \hline . .005 \\ & +.009 \end{aligned}$
117．Guarnsey，Wyo．						
115．Winnemuces，Nev．						
109．Sheridan，Wyo．．．						
82．Rock Springs，Wyo						
45．Gunnison，Colo．	380385420538570	$\begin{gathered} 2940 \\ 919 \\ 1811 \\ 1635 \\ 1322 \end{gathered}$	$\begin{aligned} & \pm .020 \\ & \pm .011 \\ & \pm .007 \\ & +.019 \end{aligned}$	$\begin{array}{r} +.037 \\ +.007 \\ +.003 \\ +.0024 \end{array}$	$\begin{aligned} & =.229 \\ & =.105 \\ & =.182 \\ & =.146 \end{aligned}$	$\pm .027$ $\pm .003$ （006 $=.0021$
194．Huntley，Mont．．．．．						
12．Colorado Springs，Colo．						
195．Salt Lake City，Utah．						
4．Denver，Colo．	$\begin{aligned} & 574 \\ & 575 \\ & 588 \\ & \hline 824 \\ & 880 \end{aligned}$	$\begin{array}{r} 1698 \\ 821 \\ 89 \\ \hline 89 \\ 1398 \\ 1398 \end{array}$	$\begin{array}{r} -.016 \\ \pm .008 \\ \pm .0020 \end{array}$	$\begin{aligned} & \mp .018 \\ & +.0020 \\ & -: 0001 \\ & \hline .0001 \end{aligned}$	$\begin{aligned} & =.182 \\ & =.117 \\ & =.173 \\ & =.173 \end{aligned}$	$\begin{aligned} & =.023 \\ & =.028 \\ & =.038 \\ & =.019 \end{aligned}$
79．Boise Idaho．						
78．Sand point，Idaho．						
60．Grand Canyon，Ariy．						
47．Green River，Utah．	870	1243	$\begin{aligned} & +.024 \\ & -.021 \end{aligned}$	－． 028	－． 180	－． 058
Mean with regard to sign．			$\begin{aligned} & -.003 \\ & .020 \\ & \hline \end{aligned}$	$\text { . } 000$	$-.107$	－． 0024
Mean without regard to sign						

Twenty stations in mountainous regions and above the general level，arranged in the order of their distances above the general level．

Number and name of station		Eleva－ tion of station	Anomaly			
			$\begin{aligned} & \text { Hayford, } \\ & 1912 ; \\ & \text { depth, } \\ & 113.7 \mathrm{~km} \end{aligned}$	Haplord， 19106； deth， 60 km	$\begin{aligned} & \text { Bouguer } \\ & \left(0_{0} 0^{\prime \prime}-\gamma_{0}\right. \end{aligned}$	$\begin{gathered} \text { In free } \\ \text { wir } \\ (0, \gamma) \end{gathered}$
	Meters．$\begin{aligned} & 18 \\ & 19 \\ & 33 \\ & 63 \end{aligned}$	Meters20110001002022002	$\begin{gathered} -0.018 \\ \pm .0031 \\ \pm .0200 \\ \pm .0001 \end{gathered}$	$\begin{aligned} & -0.011 \\ & +.0 .016 \\ & +.0015 \\ & +.0 .05 \end{aligned}$	$=0.031$$=.189$+.207$\pm .015$-.183	-0.003+.028+.007+.035+.035
129．Lancaster，N． L ． $\mathrm{H} . .$.						
116．Ety，Nev．．．．．．．．						
101．Helenwood，Tenn．．．．．${ }_{\text {52 }}$ Lower Geyser Besin，						
52．Lower Geyser Basin，Wy						
51．Norris Geyser Basin，Wyo	$\begin{aligned} & 139 \\ & 147 \\ & 180 \\ & 280 \\ & 206 \end{aligned}$	275621912708280150	$\begin{aligned} & \pm .021 \\ & \pm .000 \\ & +.000 \\ & \hline . .002 \end{aligned}$	+.038+.001+.001+.034	$\begin{aligned} & =.1777 \\ & =.197 \\ & =.048 \\ & =.088 \end{aligned}$	+.080+.036+.329+.018
158．Asheville，N．O．．						
50．Grand Canyon，W5						
88．Alpine，Tex．．．．						
64．Nogales，Ariz．	$\begin{aligned} & 228 \\ & 291 \\ & 308 \\ & 37 \\ & \hline 488 \end{aligned}$	$\begin{aligned} & 1181 \\ & 770 \\ & 771 \\ & 571 \\ & \hline 994 \\ & \hline 150 \end{aligned}$	$\begin{aligned} & \mp .050 \\ & \pm .000 \\ & \pm .006 \\ & +.0092 \end{aligned}$	$\begin{aligned} & \mp .040 \\ & \pm .020 \\ & \pm .0012 \end{aligned}$	二． 132	－．004
S．Lake Placd， N ．						
					4	
7.				＋．062	2	
68．Yavapal，Ariz．	$\begin{aligned} & 512 \\ & 512 \\ & 512 \\ & 1324 \\ & \hline 2135 \end{aligned}$	2179180512821890429	$\begin{aligned} & \pm .001 \\ & \mathbf{y} \\ & \hline .0023 \\ & +.0001 \end{aligned}$	$\begin{aligned} & +.012 \\ & +.013 \\ & +.013 \\ & +.018 \end{aligned}$	$\begin{aligned} & \mathrm{Z} .16282 \\ & \pm .003 \\ & \pm .042 \\ & -.204 \end{aligned}$	$\begin{aligned} & +.013 \\ & +.0127 \\ & +.122 \\ & +.1212 \end{aligned}$
114．Truckee Cal						
55．Mount Hamilion，						
6．Cloudland，Tenn						
6．Pikes Peak，Col						
Mean with regard to slgn．． Hean without regard to sign			＋．001	$+.016$	－． .111	＋．058

Mean anomalies.
WITH REGARD TO SIGN.

WITHOUT REGARD TO SIGN.

Anomalies for all stations trated as a single group.

	Anomaly			
	Haylord, 1912; depth, 113.7 km	Hayford, 1916; depth, 60 km	Bouguer	In tree aif
Mean with regard to sign, 219 stations.	-0.003	0.000	-0.037	+0.012
Mean without regard to sign, 219 stations.	. 020	. 020	. 050	. 028
Mean with regard to sign, 217 statlons (Seat ile stations omitted).	-. 002	+.001	-. 038	+.013
Mean withost regard to sign, 217 stations (Seatile stations omittod	. 019	. 019	. 049	-035

The mean anomalies with regard to sign for the Bouguer reduction show a remarkable range in values from +0.017 dyne for the coast stations to $\mathbf{- 0 . 1 1 0}$ dyne for stations in mountainous regions which are above the general level. The other classes of topography have mean Bouguer values which fall between these extremes. The value which is nearest zero is for the stations near but not on the coast; that is, on the coastal plains. The effect of ignoring the compensation here should have little effect as the topography is in general very low. We may conclude that there are decided relations between the Bouguer anomalies and the character of the topography. Therefore it is certain that the earth's orust is not rigid with the oceans and continents held in place as a result of its rigidity. The Bouguer method is certainly not based upon correct principles.

The free-air anomalies have means with regard to sign for the five topographic groups which range from -0.008 for mountain stations below the general level to +0.058 for those mountain stations which are above the general level. The coast stations and those near but not on the coasts have mean anomalies, with sign considered, of +0.017 . The stations in the interior not in mountain regions have a mean of +0.009 . If the mean of the 1912 and 1916 values for the gravity at the equator, which is 0.009 dyne greater than the Helmert 1901 value, had been used, the mean of the anomalies by the free-air method for the stations in the interior and not in mountainous regions would have been zero. This is as one might expect, for the effects of the distant topography and compensation are not large (see tables on pp. 20 to 48) and the effect of the near topography on a plain is almost exactly balanced by the isostatic compensation. It is a fact which should be kept in mind when studying the effect of topography and isostatic compensation that the attractive effect of a mass of uniform density, of great horizontal extent, and of a uniform thickness is the same as for a mass of a much greater thickness, with a correspondingly smaller density and the same great horizontal extent. As an
example, a disk of material 100 feet thick of density 2.67 and 1000 miles in horizontal radius will have practically the same attraction as a mass 100000 feet thick with a density of 0.00267 and as before 1000 miles in horizontal dimensions from the center of the disk. Therefore we have the attractive effect of the topography of a plain of great dimensions exactly or nearly balanced by the effect of the compensation. (See p. 72.)

The mean of the 1912 Hayford anomalies with regard to sign is only -0.002 (omitting the Seattle stations) and the mean value for each of the five topographic groups is small except one. The mean of the coast station anomalies is -0.009 . This mean anomaly may be explained in part by the fact that nearly all the material along the coasts belongs to the Cenozoic or recent formation, and authorities give its density as ranging from 2.40 to 2.50 . (See table on p. 215 of "The Strength of the Earth's Crust" by Joseph Barrell in Volume XXII of Journal of Geology.) This material is no doubt of considerable thickness at many parts of the coasts. It is shown on pages 70 to 83 under the heading "Relation between the gravity anomalies and the geologic formation" that the presence of light material in the earth's crust near a station would tend to make the computed value of gravity too great and the difference between the observed and computed values would tend to be negative. If we should eliminate from consideration the coast stations or assume that the value -0.009 is explained by the presence. of the Cenozoic material, then the mean with regard to sign of the anomalies for the various topographic groups is never more than 0.003 dyne from the mean for all stations, and three of the groups have means which are only 0.001 from the mean of all. The total range in the means with regard to sign for the various groups, ignoring coast stations, is only 0.004 dyne. This is very different from the range in the means for the Bouguer and the free-air anomalies. It shows that this method is very much closer to the truth.

The means for the Hayford 1912 anomalies for the various groups without regard to sign vary only slightly. The lowest is 0.017 for mountain stations above the general level, and the largest is 0.021 for stations near but not on the coast. The mean for all is 0.019 . The mean of the Bouguer anomalies without regard to sign for the several groups varies from 0.021 for coast stations to 0.111 for stations in mountainous regions above the general level, while the free-air anomalies vary from 0.022 at coast stations to 0.059 at stations in mountainous regions above the general level.

We must conclude that the average size of the anomalies without regard to sign indicates that there is no relation between the Hayford 1912 anomalies and the topography.

The Hayford 1916 anomalies give substantially the same evidence in favor of isostasy that is given by the 1912 anomalies, but it is difficult to see which method of reduction is nearer the truth.

The mean value for the 1916 anomalies with regard to sign for 217 stations is +0.001 . The mean anomaly for the coast stations is -0.003 , which is different from the mean by 0.004 . For the 1912 anomalies the mean coast anomaly differs 0.007 from the mean of all, which is -0.002 . This may be considered as being in favor of a depth of 60 km . as against the depth of 113.7 km . But, as stated above, and also on pages 76 and 77 , the material near the coast belongs in general to the Cenozoic geologic formation which is less dense than normal (2.67). The presence of this less dense material makes the computed value of gravity too great and the anomalies negative. The effect of reducing the depth of compensation to 60 km . is to give the compensation of the oceans less effect at the coast stations, the computed gravity is less, and the negative anomalies are reduced in size on an average. It is questionable whether the reduced size of the mean anomaly with regard to sign for the 1916 reduction is evidence in favor of the reduced depth of compensation.

The means with regard to sign for the 1916 anomalies in the groups near the coast, in the interior not in the mountainous regions, and in mountainous regions below the general level, are practically the same as for the 1912 anomalies. Hence there is little evidence from these in favor of either reduction.

There is a decided difference between the mean with regard to sign for the 1912 and 1916 anomalies at stations in mountainous regions above the general level. The former is only +0.001 , which shows no systematic error, while the latter is +0.016 , which, on the other hand, shows a great systematic error.

The change in depth from 113.7 km . to 60 km . does not make a material difference in the effect of the compensation for the stations in mountainous regions below the general level if there is local compensation of the mountain masses. (See p. 108.) The table of individual values for the an malies on page 66 shows that for this class of topography the anomalies are nearly the same for the 1912 and the 1916 reductions.

The table on page 66 for stations above the general level in mountainous regions shows that there is little or no similarity between the anomalies by the 1912 and 1916 methods. For the first method there are 9 stations of the 20 with negative anomalies, while for the latter there are only 4. There are only 3 of the 1912 anomalies above 0.030 , while there are 6 of the 1916 anomalies.

If there is local compensation, then the effect of reducing the depth is to make the effect (negative) of the compensation greater and the computed value of gravity at a mountainous station less. The sign of the anomaly would in consequence tend to be positive. This is what we find to be the case. If the compensation is regional, then the effect of changing the depth of compensation is smaller than if the compensation were local.

It is believed that from the above evidence the conclusion may be drawn that the depth of 113.7 km . is nearer the truth than 60 km . in mountainous regions, and that local distribution of the compensation is more probable than the regional if the latter distribution extends to great distances from the topographic features. This agrees with the evidence given under the heading "Regional versus local distribution of compensation." (See pp. 85 to 92.) The data and discussion on pages 97 to 131 in connection with the anomalies for various depths should be considered in connection with the data given above.

It is believed that the further conclusions may be justified, that there is a relation between the coast topography and the gravity anomalies by the 1912 reduction, this relation probably being due to the lighter material in the earth's crust below sea level, and that there is also a relation between the topography and the gravity anomalies at stations in mountainous regions above the general level for the 1916 method, this relation being explained by the erroneous depth of compensation for this method (60 km .).

Chapter V.-RELATION BETWEEN THE GRAVITY ANOMALIES AND THE GEOLOGIC FORMATION.

Surface densities are known to differ somewhat from the mean surface density and these differences will sometimes occur over large areas. They should cause, therefore, some variation of the value of the intensity of gravity from the normal. As the surface densities vary somewhat for the different geologic formations, a study was made to learn whether there is any relation between the Hayford gravity anomalies and the surface geology at the stations. On page 215 of the Journal of Geology (Vol. XXII, 1914) Barrell gives the following estimated mean specific gravities of geologic formations:

```
Pre-Cambrian.
    2.75-2.80
Paleozoic and Mesozoic.
2.50-2.60
Cenozoic. . ..................................................................................... 2. . . 40-2.50
```

The author presents the data in the tables following, which may be used as the basis for investigation by others who are interested in this subject. The tables give data for the 219 stations in the United States, 42 stations in Canada, and 73 stations in India. For all of these stations the 1912 Hayford anomalies have been computed and are given.

The stations in the United States and in Canada were plotted on the geologic map of North America which bears the following title: "Geologic map of North America, compiled by the United States Geological Survey in cooperation with the Geological Survey of Canada and Instituto Geologico de Mexico, under the supervision of Bailey Willis and George W. Stose, Scale $1: 5000000,1911 . "$ The decision as to the surface geologic formation on which the stations are located was based entirely on this map. It is probable that the classification would differ occasionally if other sources of information were used. The writer believes, however, that only minor changes would be made in the tables given below and the conclusions drawn from them would not be materially changed.

The Indian stations were plotted on a geologic map taken from the pocket at the back of "A manual of the geology of India," by Medlicott and Blanford, second edition, revised by Oldham, superintendent Geological Survey of India, 1893.

The tables give the stations and the Hayford 1912 anomalies for each of the formations, (1) pre-Cambrian, (2) Paleozoic, (3) Mesozoic, (4) Cenozoic, (5) Effusive and Intrusive, and (6) unclassified.

In the tables for the United States the 1912 and 1916 Hayford anomalies are given. The former are based upon the United States Coast and Geodetic Survey formula of 1912, viz,

$$
\gamma_{0}=978.038\left(1+0.005302 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right)
$$

which gives the value of gravity for any latitude at sea level. The compensation was assumed to be uniformly distributed and complete at a depth of 113.7 km . The 1916 values are based upon the United States Coast and Geodetic Survey formula of 1916 (see p. - of this volume) viz,

$$
\gamma_{0}=978.040\left(1+0.005302 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right)
$$

and upon a depth of isostatic compensation of 60 km .
The relations between the gravity anomalies and the geologic formations in Canada and India are considered later (pp. 80 to 82). The anomalies given for these countries are comparable with those shown in the following table for the 1912 formula and depth of compensation. It will be shown later in what measure the relations for the stations in those countries confirm or negative those in the United States.

RELATION BETWEEN THE GRAVITY ANOMALIES AND THE GEOLOGIC FORMATION FOR STATIONS IN THE UNITED STATES.

Stations in the United States and Hayford anomalies for specified formations.

Formation and station number	Hayford anomaly		Formation and station number	Hayford anomaly		Formation and station number	Hayford anomaly	
	1912	1916		1 El 2	1916		1912	1916
Pro-Cambrian formation: 16. 24. 43. 45. 57.			Palcozoic formation-Con.			Cenozole formation-Con.		
	+0.015	+0.017	179..	-0.025	-0.027	93....................	-0.044	-0.042
	+.022	+.025	181.	$\pm .015$	$\pm .015$	95	$\pm .001$	-. 002
	+.021 +.020	+.045	182	=.050	$=.051$	97.	=. 012	-. 013
	$+.038$	+.041	184.	-.087	-. 028	100	=.016	=.013
	$+.023$	$+.023$	196.	+.036	$+.035$	109 a.	+.032	$+.035$
	+.052	+.062	204.	-. 023	-. 025	112.	$+.033$	+.029
	+.004	$\pm .021$	207	-. 029	-. 028	115.	-.009	$-.006$
	+.024	+.026	208	-. 008	-. 008	117 a	+.036	+.035
	-. 005	+.009		-. 028	-. 027	125.	-. 023	-. 018
165	-. 028	-. 020	211.	-. 023	-. 022	126.	-. 022	-. 016
185	+.012	+.012	219.	-. 049	-. 048	127	-. 014	-.007
	+.011	+.005 +.049				144	$\pm .011$	$\pm .009$
		$+.048$	3. 10.	-. 008	-. 008	$\begin{aligned} & 144 . \\ & 145 . \end{aligned}$	-.006	-. 005
			11.	-. 010	-. 010			
	-. 027	-.028	23	- . 011	-. 008	148.	-. 018	-. 012
	$+.028$	$+.028$	25	-. 019	-. 016	149....................	-. 031	-. 024
	+.010 +.005	+.022 +.008		+.014	+. 012		$=.036$	-. 026
	$+.005$	+.009	42.	-. 007	+.003		-.001	+.007
32	-. 023	$-.020$		$\pm .024$	$\pm .024$			
33.	-. .003	-. 003	54	- . 023	-. 010	161	=.021	-. 0.016
	-. 019	-. 019		-.003	+.013	163.	+.002	+.005
	-. 009	-. 010				164.	-. 014	-. 010
	-. 007	-. 009	60	+.001	-.003		-. 012	-. 012
	- . 005	-. 005	70	+.013	\pm	168.	+.013	$+.012$
	-. 005	-. 007	71.	+.003	+.016	190.	+.017	$+.015$
	-. 016	-. 018		+.005	+.004	206.	+.018	+.020
	+. 019	$+.015$				213.	+.013	+.016
	-. 029	-. 028	77	+.029	+.024	215.	-. 029	-. 023
	+.032	+. 034		\pm	$\pm .038$		-. 010	-. 006
	$+.059$	+.037	108	-. 0008	-.008	Intrusive formstion:		
	+.002	. 000	118	+.014	+.009	28.	-. 020	-. 015
	$\pm .001$	-. 0013				31.	-.008	$-.007$
$\begin{aligned} & 89 . \\ & 99 . \\ & 100 . \\ & 100 . \\ & 105 . \end{aligned}$	-.010	-.013		+ 002 +.019	+.005 +.021	86	$\pm .006$	$\pm .016$
	-. 000	-. 019	136	+. 012	+. 009			
	-. 052	-. 051	187	+.015	+.014	111.	-. 028	-. 019
	+.040	+.04.5		+.035	+.036	151	+.025	+.029
	-. 024	$=.024$					-. 038	-. 034
	-. 021	-. 017		+.032	+.030			
	-. 013	-. 014		+.038	+.015		-. 002	
	$+.015$	+. 013	194.	+. 011	+.007	51.	$+.021$	+.038
	-. 008	-.008	195	+.019	$+.024$	52	-. 001	+.015
	+.002 +.011	+.002 +.012		$+.008$			-. 010	$+.009$
				+.054	+.054	08.	+.021	+.034
$\begin{aligned} & 123 . \\ & 124 . \\ & 128 . \\ & 129 . \\ & 130 . \end{aligned}$	-. 043	-. 041		+.008	+.005	110	-. 015	$\underline{+.008}$
	-.003	$=.027$	201	+.030	+.028	113.	-. 027	-. 030
	$=.015$	$=.013$	202	+.021 +.005	+.024	114.	-. 028	. 000
	-. .039	-. 087				Unclassified:		
			Cenozoic formation:			13.	$+.030$	$+.027$
$\begin{aligned} & 131 . . \\ & 132 . . \\ & 133 . \\ & 134 . \\ & 135 . . \end{aligned}$	-. 024	-. 021	,	+.005	+.015	15.	-. 023	-. 021
	-. 025	-. 024	2.	+.018	+.027	19.	-. 013	-. 011
	-. 030	-. 024		+.010	+.017	21	$+.037$	$+.038$
	-. 027	-. 027	4.	. 000	$+.004$		+.039	$+.040$
	-. 024	-. 023		-. 013	-. 010			
	-. 012	-. 011	6.	+. 016	+. 017		+.024 +.022	+.027 +.025
	$+.001$	+. 002	7.	-. 009	$-.008$	41	-. 012	$-.009$
	$-.016$	-. 017	8.	+. 027	+.030	48.	+.004	$+.021$
	$+.011$	+. 012	8.	-. 020	-. 022		+. 010	+. 011
	$+.016$	+.016	17	-. 021	-. 016			
	-. 016	-. 018		-. 021	-. 008		-. 013	-.001
	+. 018	+.018		-. 016	-. 016	69	-.010	-. 001
	-. 023	-. 020				84	$+.037$	+.039
	-. 022	-. 019		-.003	-. 100		+.021	+.021
	-. 015	. 007		+.007	$+.010$			
$\begin{aligned} & 166 . \\ & 169 . \\ & 170 . \\ & 171 . \\ & 172 . \end{aligned}$						116.	-. 021	-. 003
	-.023	$\pm .021$		+.050	-.040	146.	+.003 +.013 +.011	+.005 +.016 +.008
	+.005	+.007	68.	-.050	$\underline{+.049}$	173.	$\pm .018$	+.016
	-. 030	-. 026	76.	+.002	. 000	19	-. 042	-. 042
	-. 034	-. 027		+.008	+.002			
						109.	+.017	+.015
	-. 033	-. 030	80	-. 013	-. 010	205.	+.002	. 000
	-. 024	-. 019		+.013	$+.020$	209.	$+.034$	+.036
	-. 024	-. 022		-.006	-. 005	212.	+.046	$+.048$
	$+.001$. 000		-. 048	-. 039	214.	+.036	$+.037$
	+.001	+.002		+.010	+.015	218....................	+.031	+.031

- These stations arenear pre-Cambrian formations.

Stations in the United States and Hayford anomalies for specified formations-Continued.
SUMMARY.

a Counting the two Seattle stations as one.
b With Seattle statlons omitted.

ANOMALIES ON PRE-CAMBRIAN FORMATIONS.

In the above summary it is seen that there are 14 stations located on pre-Cambrian formations and that 12 have positive and only 2 negative 1912 anomalies. For the 1916 anomalies 13 are positive and only 1 negative. This seems to be very strong evidence that we may expect positive anomalies at much the greater number of future stations in the United States which may be located on the pre-Cambrian formation. It is noteworthy that nearly all of the preCambrian stations in the United States are located on very small areas of that formation. This may give some clew as to the cause of the large positive anomaly.

If the density of the upper strata of the earth's crust for large distances (horizontal) from the stations is above normal, then the effect of this greater density, which will tend to increase the gravity, will be offset by the opposite effect of the compensating deficiency of density in the deeper crust. This is due to the fact that the effect of a certain amount of material in the form of a disk of infinite horizontal extent is the same on a unit mass of matter whether the unit mass is immediately above the surface of the attracting matter or at an indefinite distance above it. Therefore, if we should have a stratum or mass of pre-Cambrian material of density 2.90 at the earth's surface directly under the station, and of great or infinite extent horizontally, it would have the same attractive effect on the unit mass as if this matter were distributed through a great vertical distance but had the same horizontal extent. Therefore, if the dense material at the surface were compensated for by a deficiency of density in the lower crust, the positive effect of the former would be exactly counterbalanced by the negative effect of the compensation. Hence, we should not expect a decided positive anomaly at a pre-Cambrian gravity station should the formation be of uniform thickness and of great horizontal dimensions. This statement is based upon the assumption, which may be substantially true, that the area in question is in a state of perfect isostatic equilibrium at the depth of compensation.

If, however, the area of denser material is limited in horizontal extent, then the effect of the added material, being inversely proportional to the square of its distance from the attracted unit mass, will be greater than the negative effect of the compensation. Therefore, if there is a compensating lack of density in the lower crust, the resultant effect will be positive and we should have a positive gravity anomaly. The size of the anomaly will depend upon the thickness of the stratum of pre-Cambrian rock, its density, its horizontal extent, and the vertical location of the compensation.

In Special Publication No. 10 (pp. 110 and 111) there are given some numerical examples showing the effect of strata of various thicknesses and densities.

It should be borne in mind that in making the gravity reductions no numerical values are given for the densities in the earth's crust below sea level. (See p. 8.) It is assumed that the
densities in the crust under the coastal plane at sea level for the various strata are normal, and that these densities are modified by the isostatic compensation under the topography of the interior of the continents and under the oceans. It is only the deviations from the normal densities in the crust below sea level which are considered in these investigations.

The effect of masses in different locations with reference to the station is indicated in the following table, which, with some additions, is reprinted from page 109 of Special Publication No. 10:

Table of attractions for various masses.
[Each tabular value is the vertical attraction in dynes produced at a station by a mass equivalent to a stratum 100 feet thick, of density 2.67 , and of the horizontal extent indicated in the left-hand argument, if that mass is uniformly distributed from the level of the station down to the deprh indicated in the top argument and from the station in all directions horizontally to the distance indicated in the left-hand argument.]

Radius of mass	Depth				
	$\begin{aligned} & 1000 \\ & \text { feet. } \end{aligned}$	$\begin{aligned} & 5000 \\ & \text { feet. } \end{aligned}$	$\begin{gathered} 10000 \\ \text { feet. } \end{gathered}$	$\begin{aligned} & 15000 \\ & \text { feet. } \end{aligned}$	$\begin{gathered} 113.7 \\ \text { kilo- } \\ \text { meters. } \end{gathered}$
1.28 km . (the outer redius of zone E)	0.0030	0.0018	0.0011	0.0008	0.0000
5 km ..	. 01333	. 0029	. 0025	. 0021	. 0001
10 km 0034	. 0032	. 0029	. 0027	. 0003
166.7 km . (the outer radius of zone O) 1190 km . (or $10^{\circ} 44^{\prime}$, the outer radius of zone 10)	.0037 .0040	.0034 .0037	. 00034	. 00334	.0024 .0035
			. 0037		. 0035

It is seen from the preceding table that a pre-Cambrian formation 10000 feet thick, with a density of 2.94 (just 10 per cent greater than the assumed normal surface density of 2.67) and 10 km . in horizontal extent in all directions from a station on its surface will give an increase in gravity of 0.029 dyne. The effect of the isostatic compensation (uniformly distributed to the depth of compensation), the negative equivalent of 1000 feet of material of normal density (2.67), is only 0.003 dyne. The resultant effect is +0.026 dyne, approximately the average size of the 1912 pre-Cambrian anomaly.

If we should have a pre-Cambrian formation 10000 feet thick of density 2.94, as above, but of 166.7 km . horizontal extent in all directions from the station, the effect of the topography on gravity would be increased by 0.034 dyne, while the effect of the compensation of this excess of mass would be -0.024 dyne, and the resultant effect would be only +0.010 dyne. Now, if the foundation under consideration were extended horizontally 1190 km . from the station, the positive effect would be +0.037 dyne and the effect of its compensation -0.035 dyne, and the resultant effect at the station only +0.002 dyne.

On page 80, under the discussion of the Canadian stations, it is shown that the anomalies at the stations in pre-Cambrian formations are not positive as in the United States. They differ little from the mean of all stations. The pre-Cambrian formations in Canada are of considerable horizontal extent, and therefore the effect of the increased surface densities is offset by the isostatic compensation. This agrees with the above reasoning.

If there were many gravity stations on and near a limited area of pre-Cambrian formation, it might be possible to estimate from the results the approximate limits of the space within which the densities were above normal. But it must be borne in mind that the problem of determining exactly the space or spaces within which there are abnormal densities which might cause the anomalies is not susceptible of mathematical solution. This is because there are too many unknowns which would enter into any equations used and arbitrary assumptions would have to be made. Of course, the problem can be treated mathematically and with greater numbers of stations in any given area the truth can be more closely approximated.

It seems to be evident that the anomalies are not due simply to an assumed erroneous density of the mass above sea level, for at a number of pre-Cambrian stations the elevation above sea level is less than 1500 feet, and the maximum effect of a change in the density of 10 per cent in that mass would be only 0.005 dyne. The cause of the anomaly must therefore be located to a large extent below sea level in nearly all cases.

It is no doubt true that the deep-seated rocks have densities comparable with those of the pre-Cambrian rocks seen at the surface, but the cause of the anomaly at pro-Cambrian stations seems to be due largely to the dense rock protruding through the materials of the upper crust which are of less density.

The author does not mean to state that the whole of any anomaly is due to the geological formation, for there is probably in many cases a local lack of perfect isostasy which may produce deviations from the normal gravity.

It is a noteworthy fact that the pre-Cambrian stations in the United States show an excess of gravity in general, and that they are on areas which have been subjected to erosive action for geologic ages. We may conclude that as erosion has taken place there has been a rising of the areas due probably to isostatic adjustment.

The 1916 anomalies, based upon a depth of compensation of only 60 km ., are very little different from the 1912 anomalies, which are based upon a depth of 113.7 km . The former are, on an average, 0.006 dyne greater than the latter, and this is what might be expected upon the assumption of local perfect compensation. The fact that the compensation is closer to the station would make its effect greater, consequently the combined effect of the greater density of material above sea level and the compensating deficiency of material in the lower crust would be smaller than for the 1912 anomalies.

The effect of a change in the depth of compensation is discussed on pages 97 to 131 .

ANOMALIES ON PALEOZOIC FORMATIONS.

In the United States there are 72 stations in the Paleozoic formation, for which 49 of the 1912 anomalies are negative and 23 positive. The mean with regard to sign is -0.011 dyne, and the mean without regard to sign is 0.021 dyne.

The addition of 94 stations in the United States since the investigation in 1912 (Special Publication No. 12) has increased the tendency of the Paleozoic anomalies to be negative. A large area of the United States is covered by rock of this formation, and the 72 Paleozoic stations are nearly one-third of all the stations.

The density of the Paleozoic formations is given by Barrell as 2.50 to 2.60. The average density, 2.55 , is 0.12 , or about 5 per cent, lower than the density used in making the computations. The situation here is opposite to that connected with the pre-Cambrian formation, for the stations there tended to have positive anomalies. It might be assumed that the crust under the Paleozoic formation is not in a state of perfect isostasy, and that the anomalies are the result of the departure from that state. This view is probably erroneous, because the anomalies on very large areas of Paleozoic formation have negative values and would therefore indicate decided regional deviation from the perfect condition. Most of the data contained in this report, including the anomaly maps, indicate that we have in the United States local rather than regional deviations from perfect isostasy.

The tendency of the anomalies to be negative could be caused by the lower density of the material in this formation, as compared with the value used in the computations. If near a station in a Paleozoic area the density of the upper crust were below normal, say, 5 per cent, to a depth of 15000 feet and to a horizontal distance of 10 km . from the station, the effect of this deficient density would be a change in the attraction of 0.020 dyne. The effect of the compensating increase in density in the lower crust would be +0.002 . The combined effect of considering the local densities makes a difference of 0.018 in the anomaly at the station in question.

The effect on gravity at a station due to using an erroneous value of the density of the topography, that is the material which is above sea level, would be small as a general rule for the average elevation of the Paleozoic stations in the United States is somewhat less than 1000 feet. The effect of changing by 5 per cent the density of the topography to a depth of 1000 feet and 10 km . in all directions from the stations would be only 0.0017 dyne. The effect of
the compensation of the excess of mass would be less than 0.0002 dyne. It is evident that the principal cause of the negative Paleozoic anomalies is lower than sea level in the earth's crust.

It is probably true that the lighter density of Paleozoic material is the principal cause of the tendency for the anomalies at stations on this formation to have negative signs. This is no doubtsupplemented by local departures from perfect isostasy near stations with large anomalies.

It is possible that the positive anomalies and the small negative anomalies are in areas where the Paleozoic strata are thin or which have material denser than normal underlying the Paleozoic miatter.

The 1916 anomalies for Paleozoic areas seldom differ from the 1912 anomalies more than two units in the last place and the mean anomalies with and without regard to sign are practically the same. This is as might be expected, for the Paleozoic stations are in general on low topography and, as shown on page 72 in the discussion of the pre-Cambrian stations, a disk of very great horizontal extent has the same attractive effect regardless of the distance of the attracted mass from the surface of the disk. In fact, the effect of the topography and its compensation are so nearly equal at stations in Paleozoic areas that the anomalies by the free-air reduction, in which no account is taken of the topography and compensation, are nearly the same as the Hayford anomalies. An erroneous depth of compensation used in the computation can not explain the anomalies in the Paleozoic formation.

That there is in general a close approximation to perfect isostasy is shown by the Bouguer anomalies in the interior of the continent not in mountainous regions, for they are nearly all negative and are of considerable size, while the algebraic mean of the Hayford anomalies is nearly zero.

The Paleozoic negative anomalies in general are probably due in most part to departures from normal densities in the strata in the upper crust, but below sea level, comparatively near the station, and to a less degree to local departures from perfect isostasy.

ANOMALIES ON MESOROIC FORMATIONS.

Of the 36 stations in the Mesozoic formation, 25 have positive and 11 negative 1912 anomalies. The means with and without regard to sign are respectively +0.009 and 0.017 dyne.

Barrell gives the density of Mesozoic rock as ranging from 2.50 to 2.60 . This is lower than the density (2.67) used in making the topographic reductions. There seens to be no evident relation between the surface densities of the Mesozoic rocks and the anomalies. If there were the anomalies would be negative rather than positive.

That there is some relation between the formation and the anomalies seems to be well established, for the positive anomalies largely exceed the negative ones in number, and the mean anomaly with regard to sign is just one-half the size of the mean of all (219) anomalies without regard to sign. But the cause of the positive sign of the Mesozoic anomalies is below the upper strata. That it is regional to a certain extent is shown by the persistency of the sign in any extensive Mesozoic formation, such as in the Dakotas and in eastern Montana. But that it varies from place to place is indicated by the different values of the anomaly. For instance, at Edgemont, S. Dak. (station No. 198) the anomaly is +0.054 dyne and at Moorcroft, Wyo. (station No. 202) only 90 miles distant, it is +0.021 dyne.

There, of course, may be departures in the Mesozoic areas from the state of perfect isostasy, but it is impossible with the present data to determine with any degree of certainty what portion of an anomaly is due to such departures and what is caused by departures from normal densities in the crust above the depth of compensation or even below that depth. The depth of compensation as computed from geodetic data should not be considered as very definite. The probable error of the determination is comparatively large. The change in the deflection and the gravity anomalies is comparatively slow with a change of depth and the value of the depth is therefore somewhat indeterminate. (See pp. 97 to 112.)

ANOMALIES ON CENOZOIC FORMATIONG.

The anomalies at Cenozoic stations have a tendency to be negative, as is shown by an inspection of the anomalies at 55 Cenozoic stations in the United States. Only 22 of them are positive, while 32 are negative.

Barrell gives the Cenozoic densities as ranging from 2.40 to 2.50 (see table on p. 70), which is less than the density used in making the topographic reductions. That a portion of the anomalies is due to the small density of the surface material and of the crust close to the surface seems to be evident. The size of the anomalies may be an indication of the space occupied by the lighter material. Where the anomaly is large and negative the light strata would probably be of great thickness and of small horizontal dimensions. The erroneous density could be the cause of the negative anomalies, provided there were no local departure from perfect isostasy.

If the Cenozoic formation of small density is small in horizontal dimensions, and if there is perfect local isostasy, the effect of the light material in the upper crust and near the surface would be much greater than the opposite effect of the compensating increase in density in the lower crust.

For instance, if the density of the upper crust to a depth of 10000 feet is 2.40 (10 per cent less than the assumed surface density), and if the material extends in a horizontal direction 10 km . from the station, the effect would be -0.029 dyne. The effect of the compensating increase in density in the remainder of the crust to the depth of the compensation would be only +0.003 dyne and the combined effect would be -0.026 dyne. If the lighter material extends 20 or 30 km . from the station, the combined effect would be somewhat less, while if it extended 166.7 km . in all directions from the station, the combined effect would be only -0.010 dyne.

The cause of the large Cenozoic anomalies must be local, for there are decided differences in the size of the anomalies at pairs of stations which are comparatively close together. For instance, at Virginia Beach (station No. 90) the anomaly is -0.048 dyne, while at Crisfield (station No. 215) the anomaly is only -0.029 dyne. The distance between the stations is about 80 miles.

It appears from the evidence above that we may gain from the negative anomalies of the Cenozoic formations some idea of the depth of the Cenozoic material at a station, and where there are many stations in any given locality of Cenozoic formation we may get an approximation to the horizontal limits of the affected spaces. For instance, it is reasonable to conclude that if the Virginia Beach anomaly is caused by a thick stratum of material of light density, and that if this stratum extends to Crisfield, it is considerably thinner at the latter station. The reasoning employed in the discussion of the pre-Cambrian anomalies on pages 72 to 74 would indicate that the large Cenozoic anomalies must be due largely to local causes, if it is assumed that an area under investigation is in a state of perfect isostatic equilibrium.

The data in the table on page 63 indicate that there is strong evidence that the coast stations tend to have negative anomalies. In the table given on page 79 there are shown the anomalies at the Cenozoic stations back from the coast. Of the 19 stations there are 8 with positive and 11 with negative 1912 anomalies, but the mean anomaly with regard to sign is -0.009 dyne. If, however, we eliminate the Seattle anomaly, which is -0.093 , and the anomaly of station 93 (Wilmer, Ala.), which is -0.044 dyne, there would be 8 positive and 9 negative anomalies and the mean with regard to sign would be only -0.001 dyne.

This is practically normal on an average. It may indicate that the Cenozoic material in the interior of the country is not of great thickness, or that, if thick, it is of considerable horizontal extent, or that the materials under the Cenozoic stratum have densities which are greater than the normal. Of course, the anomaly may in part be caused by a lack of perfect compensation. The Bouguer anomalies at the 17 stations under consideration indicate that there is considerable isostatic compensation under these stations.

There is evidently a definite relation between the coasts and the gravity anomaly, but it may be due to the presence of Cenozoic materials which extend along practically all of the coasts. The cause of the difference in the size of the anomalies at different stations may be
due to the varying thickness of the material and the varying horizontal dimensions of thick and thin strata.

That the Cenozoic areas are undercompensated, as the negative anomalies might indicate, does not seem to be true, for the reason that these areas are areas of deposition in recent times and the areas have probably been sinking during the time when materials were accumulating on them. This deposition of material would lead one to suppose that the crust under such areas is heavier than normal. Undercompensation therefore appears to be improbable. The writer is aware that there may be even in areas of heavy deposition sections which are undercompensated, but this would be due to conditions existing before deposition began.

The 1916 anomalies at Cenozoic stations show greater differences from the 1912 anomalies than they do for the other formations considered above. In most cases, where there are decided differences, the stations are on or near the coasts near where there is deep water. The computed effect, which is positive at a land station, of the compensation under the water is greater when it is farther from the surface, for the effect of lengthening the distance to the effective center of the attracting mass is more than offset by the increase in the sine of the angle of depression to the effective center. The effect of a mass in the earth's crust on the attracted unit mass is directly proportional to the sine of the angle of depression to the effective center of the attracting mass and inversely proportional to the square of the distance.

The coast stations would therefore have a smaller computed gravity with the depth of 60 km . than with a depth of 113.7 km . Consequently the negative anomalies would be reduced in size and the positive anomalies increased. For the coast stations the new depth (60 km .) gives a mean anomaly with regard to sign of -0.003 dyne, while with a depth of 113.7 km . the mean is -0.009 dyne. The new mean is nearer zero, but it is uncertain whether this is an indication that the smaller depth is nearer the truth. The discussion above shows that the negative anomalies based on the old depth may be accounted for in general by lighter material in the upper crust.

ANOMALIES ON INTRUSIVE FORMATIONS.

The number of stations in intrusive areas is only 7 , of which 2 are positive and 5 negative. While there are two and one-half times as many negative as positive anomalies, we would not be justified in deciding that there is a definite relation between the intrusive formation and the gravity anomalies. Many additional stations would have to be established on this formation before any decision can be arrived at in the matter. The mean of the 1916 anomalies is slightly smaller than that of the 1912 anomalies and this may be an indication that the new depth, 60 km ., is nearer the truth than the older depth of 113.7 km .

ANOMALIES ON EFFUSIVE FORMATIONS.

On this formation there are eight stations and of the 1912 anomalies 2 are positive and 6 negative. The mean with regard to sign is -0.005 dyne and without regard to sign it is 0.015 dyne. The largest anomaly is only 0.028 dyne. Of the 1916 anomalies 5 are positive, 2 negative, and 1 zero. The means with and without regard to sign are, respectively, +0.010 and 0.019 dyne.

There seems to be no relation between this formation and the anomalies, but the indications are very slightly in favor of the greater depth of compensation for the effusive areas. It would be of interest and value to have additional stations in areas covered by this formation.

ANOMALIES ON UNCLABSIFIED FORMATIONS.

These stations, as the designation implies, could not be associated with any particular formations, and it is not possible to draw any conclusions from a study of their relations.

Of the 26 unclassified stations 18 have positive and only 8 negative 1912 anomalies. This is what might be expected for the mean anomaly with regard to sign of all the 219 stations is made practically zero (only -0.002 dyne) by the use of the 1912 formula. A greater number of stations are in the Paleozoic, Cenozoic, Intrusive, and Effusive formations, which tend to be negative, than in the pre-Cambrian and Mesozoic formations, which tend to be positive, there-
fore to have the mean of all stations with regard to sign nearly zero there would be a tendency for the unclassified stations to be positive．

The 1916 anomalies，with depth of 60 km ．，are practically the same as the 1912 anomalies with the depth of 113.7 km ．

An effort was made to learn whether under any one formation the plus anomalies occurred more frequently in proportion in one subdivision than in others．No such relationship between the sign of the anomaly and the subdivision of a principal geological formation could be found． For instance，in the Quaternary division of the Cenozoic there are 11 stations with positive and 19 with negative anomalies，or 37 per cent positive．In the whole Cenozoic formation there are 22 positive and 32 negative anomalies，the positive anomalies being 41 per cent of all．Like results were obtained from other tests．It appears then that the sign of the anomaly is in some way connected with a large geologic division as a whole and not with one of its sub－ divisions．

relation between the gravity anomalies and the geologic formation at stations IN THE UNITED STATES NOT WITHIN 20 MILES OF ANOTHER FORMATION．

In making the study of the relation between the gravity anomalies and the geological formation those stations which were not within 20 miles of other formations were separated and the data tabulated．These stations and their anomalies are shown in the following tables． The results are practically the same as when all stations on a formation are considered．For instance，for the Cenozoic stations 65 per cent are negative，while for all stations in that for－ mation 59 per cent are negative．The mean with regard to sign is -0.010 dyne for the Cenozoic stations in the table below，while it is -0.007 for all stations in this formation．（See table on p．72．）A similar condition exists for the other formations．The Effusive and Intrusive formations have so few stations which are not close to other formations that data for them are not given．

The table given below also contains data for 19 Cenozoic stations not on the coast and not within 20 miles of any other formation．If the two Seattle stations are counted as one，the mean with regard to sign is -0.009 ，while without the Seattle value the mean is -0.004 ．As the effect of the coast is not present，these mean values show a decided relation between the anom． alies and the Cenozoic formation．

Hayford anomalies for stations in the United States on specified formations and not within 20 miles of other formations．

Formation and station number	Haytord anomaly			Haytard anomaly		Formation and station $\begin{gathered}\text { number }\end{gathered}$	Hastord anomaly	
	1912	1918		1912	1916		1912	1916
Procambran formations：	+0.038$+: 003$$+: 002$+.011	$\begin{gathered} +0.012 \\ +0.023 \\ +0.020 \\ +.008 \end{gathered}$	Paleozoic formation－Con 105.	$\begin{aligned} & -0.021 \\ & =: 0.010 \\ & \vdots+.002 \\ & +.0011 \end{aligned}$	$\begin{gathered} -0.017 \\ =.004 \\ \hline .0 .08 \\ +.002 \end{gathered}$	Paleozoic formation－Con 177.178. 178. $178 . . .$.$181 . .$.	$\begin{aligned} & -0.024 \\ & +.000 \\ & \pm .001 \\ & +.0025 \end{aligned}$	$\begin{aligned} & -0.020 \\ & +.0002 \\ & +.0 .027 \\ & +.0075 \end{aligned}$
			$\begin{aligned} & 100 . \\ & 106 . \\ & 120 . \end{aligned}$					
185								
191.								
Paleozolc formation：\qquad	$\begin{array}{r} \mp .027 \\ +0.020 \\ \pm .003 \\ =.0023 \end{array}$		${ }_{123}^{123}$	$\begin{aligned} & =.031 \\ & =.030 \\ & =.0024 \end{aligned}$	$\begin{array}{r} =.011 \\ =: 024 \\ =.027 \end{array}$	$\begin{aligned} & 182 . \\ & 18 \end{aligned}$ 196.	$\begin{aligned} & =.050 \\ & \hline .0036 \\ & \hline .036 \end{aligned}$	$\begin{aligned} & =.051 \\ & \pm .025 \\ & \pm .025 \\ & \hline .025 \end{aligned}$
		\mp ． 0288						
		$\pm .0220$		二． 01024	231			
		－． 019		$\pm .0016$	＋．002		$\begin{aligned} & \text { =.029 } \\ & =0.003 \\ & =0023 \end{aligned}$	$\begin{aligned} & =.008 \\ & =: 0020 \end{aligned}$
	$\begin{aligned} & \text { 二:099} \\ & \text { 三:009 } \\ & =: 005 \end{aligned}$		138．2．		\mp ． 017	${ }_{211}^{208 .}$		
${ }_{37}^{36}$		二． 0.095		$\pm .016$	$\pm .018$			
	－． 0005	－． 007				40.6		
${ }_{59} 39$	$\begin{gathered} \text { + } 0019 \\ \mp .0019 \end{gathered}$	（	${ }_{1}^{153}$	$\pm .023$				
				＝．0215	$=.0019$		$\pm .081$	\mp
${ }_{7}^{72}$	$\begin{aligned} & -.029 \\ & +.062 \\ & +.069 \end{aligned}$	＋：034		＝．023	．021		－． 013	
88	－． 000	$=.013$	180.	＋．013				
${ }^{80}$				$\pm .030$				＋．024
			${ }_{172 \ldots}^{172 . \ldots}$	二： 0.038	二． 037	108	$=: 006$	$=.008$

Hayford anomalies for stations in the United States on specified formations and not within 20 miles of other formationsContinued.

Formation and station number	Haylord anomaly		Formation and station number	Hayford anomaly		Formation and station number	Hayford anomaly			
	1912	1916		1912	1916		1912	1916		
Mesozoic formation-Con. 118	+0.014	+0.009			-0.013	Cenozoic formation, a way from coast-Continued.	-0.044	-0.042		
	+.012	+.009		-. 016						
187.	+.015	+.014		$+.033$	+.029	85.	+.001	-.002		
129.	+.032	$+.036$		-. 023	-. 018	97.	-. 012	- ${ }^{013}$		
193	+.030	+.028		-. 022	-. 016	99.	-. 016	-.013		
$202 .$.		$+.024$				112.	+.033	+.029		
Conozole formation:	$+.005$	$+.015$	$\begin{aligned} & 142 . \\ & 144 . \end{aligned}$	+.011	-.007		+. 011			
1................				-.006	-.005	144.	-.006	$\pm .005$		
2.	+.018	+.027	145.	+.014	+. 016	145.	+.014	+.016		
3.	+.010	+. 017		-. 036	-. 028	$\begin{aligned} & 158 . \\ & 160 . \end{aligned}$	$=.017$	$\begin{array}{r} -.010 \\ -.008 \end{array}$		
5.	+.000	-. 010		-. 017						
5.	-. 013		$\begin{aligned} & 158 . . \\ & 159 . . \end{aligned}$		-. 010	$160 .$ $163 .$				
6.	+. 016	+.017	160.	-. 014	-. 008	167.	+.012	+.005 $\pm .012$		
7.	$\underline{+.009}$	-. 0008	161...................	-. 021	-. 016	168.	+.013	+. 012		
8.	+.027	$+.030$	163....................	+.002	+.005	190.	+.017	+.015		
	-. 020	-. 022				215	-. 029	-. 023		
	-. 021	-. .016	$\begin{aligned} & 164 . \\ & 167 . \end{aligned}$	$=.014$						
18.	$-.021$	-. 008	168.		$\begin{array}{r} \mp .012 \\ +.012 \end{array}$					
$\left.{ }_{53}^{3}\right\}$	-. 003	$-.100$	190	+.017	+.015	$\begin{aligned} & \text { ftusive and } \\ & \text { formations: } \\ & 50 \\ & 51 \end{aligned}$	-. 002	$\begin{aligned} & \pm .017 \\ & +.038 \\ & \pm .015 \\ & -.030 \end{aligned}$		
56	-.003	$=.049$	215.	-. 010	-. .006		+.021			
68.	=.060		217.			62..111.	$\begin{aligned} & =.001 \\ & =.028 \\ & =.027 \end{aligned}$			
			Cenozole formation, away from coast:							
83.	$-.008$	$-.005$	6....	+.016	+.017					
	-. 048	+.039+.015								
	+.010		$\left.\begin{array}{c} 58 \\ 58 \end{array}\right\} .$	-. 093	-. 100					
	+.001	-.002		-. 006	-. 005					

SUMMARY.

Geologic formation	Number of stations					Mean anomaly			
	With plus anomalies		With minus snomalies		All	With regard to sign.		Without regard to sign	
	1912	[1]	1912	1916		1912	1916	1912	1916
Pre-Cambrian.	5	5	0	0	5	+0.022	+0.022	0.022	0.022
Palezoic..	18	17	39	38	57	-.009	$\div .008$. 020	. 020
Cenozoic.	12	11	${ }_{26}$	${ }_{2}^{4}$	${ }_{40}$	\pm	$\pm .010$. 018	. 017
Cenozoica.	13	14	25	\%	17	-. .008	=.005	. 017	. 016
Cenozoic, away from coast o	8	7	11	12	19	-.009	=.005	. 020	. 019
Cenozolc, away from coast a		7	10	11	18	-. 004	-. 003	. 016	. 014
Eturive and fintrusive....	1	8	4	2	5	-. 007	+.004	. 016	. 124

With the two Seattle stations counted as one.

RELATION BBTWEEN THE GRAVITY ANOMALIES AND THE GEOLOGIC FORMATION FOR STATIONS IN CANADA.

There are 42 stations in Canada for which the principal facts are given in the table on page 54. The stations with their anomalies (Hayford, 1912) arranged according to the geologic formations are given in the following table:

Canadian stations and Hayford anomalies for specified formations.

Formation and station number	Hayford anomaly 1912	Formation and station number	Hayford anomaly 1912	Formation and station number	Hayford anomaly 1912	Formation and station number	Hayford anomaly 1912
PreCambrlan forma		Paleozoic formation:		Paleozoic formation-		Unclassifled:	
tions:	-0.010	$3 .$	-0.018 -.012	28............	-0.026		-0.008 -.029
	-. 028		-. 005	29.	+.008	20	-. 023
5.	+. 001		+.011	31.	-. 009	36.	+.007
9.	-. 030		+.006	37.	-. 011	39.	-. 009
10.	-.002		- 001	Mesoroic formation.			-. 008
11.	-. 022	16.	-. 034	3	+. 007		
13.	+.004	17.	-. 012		-.005		
14.	-. 045	18.	+. 012		-. 006		
15.	$+.006$	19					
25.	$+.011$	20.	$\pm .006$	Cenozole formation:	-. 004		
30.	+.001	21.	-. 016		-. 016		
38.	-.043		-. 009				
	+.002		-. 011				

summary.

It is a fact worthy of careful consideration that the mean without regard to sign for the Canadian stations is only 0.013 dyne while for the stations in the United States the mean is 0.019 dyne. There are only three stations (7 per cent of all) in Canada with anomalies greater than 0.030 dyne, while in the United States there are 40 stations (18 per cent of all) with anomalies greater than that amount.

The mean with regard to sign for the Canadian anomalies is -0.009 dyne , while in the United States it is -0.002 dyne. The anomalies are computed with the 1912 formula with the depth of 113.7 km ., so they are comparable with the 1912 anomalies in the United States. The writer can see no cause for the mean with regard to sign being so far from that of the United States. Nor can he see any reason why the mean without regard to sign for Canadian stations is so much smaller than for the stations in the United States. The latter is an indication that the area covered by the Canadian stations is more nearly in a state of perfect isostasy locally.

The mean with regard to sign for the stations in the pre-Cambrian formation is -0.012 , which is only 0.003 from the mean of all, and for the Paleozoic and Cenozoic formations the means differ only 0.001 dyne from the mean of all. The mean without regard to sign for the three Mesozoic stations is -0.001 dyne, which is 0.008 from the mean of all, but this has little significance as there are so few stations.

The conclusion must be drawn that there is no apparent relation between the geologic formation and the gravity anomalies at stations in Canada.

RELATION BETWEEN THE GRAVITY ANOMALIES AND THE GEOLOGIC FORMATION FOR STATIONS IN INDIA.

In the table below the stations in India are arranged in groups according to the geologic formation. In order to decide on what formations the stations are located, they were plotted on a geologic map in the 1890 report of the Geological Survey of India. (See p. 70).

Indian stations and Hayford anomalies for specified formations.

SUMMARY.

The anomalies are based upon the United States Coast and Geodetic Survey formula of 1912, and hence are comparable with the 1912 anomalies in Canada and in the United States. The mean with regard to sign is -0.004 , and this differs only 0.002 from the mean in the United States, which is -0.002 dyne.

If the latest value of gravity for the base station, Dehra Dun, 979.065 dynes, had been used instead of 979.063 dynes, (see p. 55), the observed values in India would each be greater by 0.002 dyne. Then the mean with regard to sign would be -0.002 , the same as for the United States.

There are 8 stations in pre-Cambrian formations in India, of which 6 have positive anomalies and 2 negative anomalies. The two stations, Nos. 94 and 108, with negative anomalies, which are quite large, and one station, No. 82 , with a rather small positive anomaly, are in the extreme southern part of the Indian Peninsula on a very extensive area of pre-Cambrian formation. The wide extent of this area would probably prevent the existence of large positive anomalies (see p. 72) in spite of the density, greater than normal, of the surface and subsurface rocks, but there must be in addition some unusual local deficiency in the underlying matter in order to
account for these large negative anomalies. Stations 94 and 108 are only about 8 miles apart and should really be considered as only one station, as both must be affected by the same anomalous condition. The mean anomaly at these two stations is -0.048 . If these two stations were considered as one, then there would be 6 pre-Cambrian stations with positive anomalies and only 1 with negative anomaly and the mean with regard to sign for this group would be +0.009 , which is of the same sign and about one-third the size of the corresponding value for United States pre-Cambrian stations. With the exception of the three stations, 82, 94, and 108, noted above, all the pre-Cambrian stations are situated on less widely extended areas and have positive anomalies, but there is no striking relation between the extent of the area and the magnitude of the anomaly except perhaps at station 43, Jubbulpore, which is on a very limited area of the formation. The map does not indicate the extent of the formation around station 95, Sandakphu.

There seems to be no relation between the anomaly and the Paleozoic formation, as the mean anomaly is nearly normal. This fact should not be given much consideration, as there are comparatively few stations in this formation.

The Mesozoic formation has only one station, and that can not be considered as representing any relation whatever.

The Cenozoic formation has 42 per cent of all the stations and has the only negative mean anomaly with regard to sign. This mean anomaly is -0.017 . It agrees in sign, but is much larger than the Cenozoic mean anomaly with regard to sign in the United States, which is -0.007 dyne. All of the Indian Cenozoic stations are back from the coast except one, and it must be concluded that there is a very definite relation between the anomalies and the Cenozoic formation. On page 76 the question was discussed as to whether the Cenozoic formation or the proximity to the open coast was the cause of the negative anomalies at coast stations. The 31 Cenozoic anomalies in India seem to prove that this formation is the main cause of the negative anomalies.

Many of the Cenozoic stations in India are in areas to which great quantities of material have been carried from the Himalaya Mountains. It is probable that the larger Cenozoic anomalies are above portions of the crust where the recent material is thick and of limited horizontal extent. (See discussion under "pre-Cambrian anomalies," pp. 72 to 74.)

It has been held by some geodesists in India ${ }^{\text {a }}$ that there is probably a rift in the earth's crust where the large negative anomalies exist. The evidence at hand makes it possible to account for the anomalies by the Cenozoic formation in the affected area.

Of course, it is probable that in India, as in other countries, there are local, and in some areas regional, departures from a state of perfect isostasy, but as evidence in the form of gravity stations accumulates the theory of isostasy is given added strength.

The effect of the change of depth from 113.7 km . to 60 km . is discussed at some length on pages 97 to 112. It should be noticed that the general effect of the change in the depth is slight, though in a few cases it is comparatively large. The anomalies, not being materially changed by a decided change in depth, are dependent upon some other condition or conditions in the earth's crust than an erroneous depth.

The summaries on pages 72 and 81, which give evidence for stations in the United States and India, respectively, point strongly to rather definite relations between the sign of the anomaly and the surface geology at the station. This relation may be due to variation from the normal density for strata in the upper crust, these abnormal densities being compensated for by a counterbalancing change in density occurring in the lower crust, possibly to the depth of compensation.
RELATION BETWEEN THE GRAVITY ANOMALIES AND TEE GEOLOGIC FORMATION SHOWN GRAPHICALLY.
In figure 17 there are shown areas which have certain geologic formations at the surface of the earth. The outlines of the areas were copied from the geologic map of North America mentioned on page 70. The scale of this illustration is the same as for those which show the
gravity anomaly contours (figs. 11 to 14). The Cenozoic and Paleozoic areas are shown in yellow, which is also used on the anomaly maps to show the negative areas. The pre-Cambrian and Mesozoic areas are shown in green, the color used to indicate positive areas on the anomaly illustrations.

The largest continuous area is for the Paleozoic formation, and extends from eastern New York westward to Minnesota, southwestward to Texas, and southward to Alabama. There is practically no portion of this area with any material other than that of the Paleozoic. There is a striking similarity between this Paleozoic area and the very extensive negative area which extends from New England westward to Iowa and Missouri, as shown in figure 11, which shows the Hayford 1912 anomalies. A break in this negative area occurs in Michigan, Ohio, and Indiana, where there are four stations with positive anomalies; but their size is small, the maximum anomaly being only +0.012 dyne. Within this large Paleozoic area there are 52 stations with negative anomalies and only 23 with positive anomalies.

Along the Atlantic coast from New York City southward and along all of the Gulf coast the geologic formation is Cenozoic, except for a small break on the coast of South Carolina. Figure 17 gives the limits of the coastal areas belonging to this formation (shown in yellow). A comparison with figure 11 shows that there is some similarity between the negative areas and the Cenozoic areas near the coast. They agree more closely very near the coast.

There is an extensive area in Minnesota, South Dakota, and North Dakota within which the geology is largely pre-Cambrian and Mesozoic. There is a second pre-Cambrian and Mesozoic area in Montana and Wyoming. Between these two areas there is an area in which the geology is largely Cenozoic. The gravity anomaly map (fig. 11) shows that there are no negative anomalies within the limits of the above three areas. There are only two stations in the intervening Cenozoic area, however. It is worthy of note that there is a narrow extension of the first-mentioned pre-Cambrian and Mesozoic area southward into Nebraska and Kansas, and that a positive area in figure 11 coincides approximately with this extension.

A narrow strip of nearly all Cenozoic formation extends southward from South Dakota to Texas and New Mexico. A band of negative area in figure 11 partly coincides with this Cenozoic region. If more stations were established within the two areas, they would possibly coincide more nearly.

In western and central Texas there is an area mostly of Mesozoic formation. Figure 11 shows only three stations within the area, and two are positive. The other station, at Austin, is negative, but is very close to the border of the area under consideration. The contours are drawn in such a way as to make negative nearly one-half the area.

A long strip of pre-Cambrian or Mesozoic formation (including a few small areas of other formations) extends from the Hudson River southwestward along the Appalachian Mountains to Nlabama, thence northward in a very narrow band to western Kentucky. There is some similarity between this area and the areas of positive anomaly which extend along the Appalachian system from New York to Georgia and Alabama.

In northern Michigan and Wisconsin and across the international boundary there is an area of pre-Cambrian formation in which all of the stations of the United States have positive anomalies.

That portion of the United States which has not been considered above has no extensive area in which there is only one geologic formation or combinations of pre-Cambrian and Mesozoic or of Paleozoic and Cenozoic. It is interesting to note that in the remainder of the United States, not colored in figure 17, the gravity contours show that there are no steep contours except in the vicinity of Seattle. The western part of the United States is largely negative, but the characteristics of the contours would no doubt be changed greatly by the addition of new stations.

We must conclude that the data contained in figures 11 and 17 substantiate the evidence given in the table on pages 71 and 72 that the pre-Cambrian and Mesozoic areas have in general positive anomalies and that the Paleozoic and Cenozoic areas have a strong tendency to negative anomalies.

RELATION BETWEEN THE GRAVITY ANOMALIES AND AREAS OF EROSION AND DEROSITION.

It has been shown that there is a rather definite relation between the gravity anomalies and certain geologic formations and that there is also a relation between the anomalies and the topography for coast stations. (See pp. 70 to 83 and also pp. 63 to 69.) It has been indicated that this relation at const stations is due to the fact that along most of the coast the materials, at least at the surface, belong to the Cenozoic geologic formation. (See p. 76.)

It is probably true that along the whole coast of the United States deposition of thematerial has been taking place in recent geologic time. The natural assumption would be that this deposited material is an extra load on the earth's crust and that in consequence observed gravity should be in excess of the computed gravity. This, however, is not the case. An inspection of the gravity anomaly map, figure 11, shows that along the coasts observed gravity is, in general, less than the computed gravity.

The logical conclusion from all available data seems to be that isostasy along the coasts is nearly perfect on the whole and that the computed gravity is too great because the materials in the upper crust are less than normal. According to Barreli the densities of Cenozoic matier vary from 2.40 to 2.50 , while on an average the density for the whole land surface of the earth is about 2.67 , the value used in the computations in this volume. It seems probable that as the materials are deposited along the coasts isostatic adjustment takes place and the pressure at the depth of compensation is in general normal. In the interior of the country the areas covered by the Cenozoic formation, which are likewise areas of recent deposition, are largely negative, as shown in figure 11. This is a condition similar to that found along the coasts.

The areas of recent erosion are greater than those of recent deposition. They are areas within which theoretically the gravity anomalies should be negative, but there appears to be no such relation. In fact, the oldest formations which no doubt have been subjected to the greatest erosion are in general areas of positive anomalies. This is shown by a comparison of figures 11 and 17 , one of which shows the gravity anomalies and areas of negative and positive anomalies and the other limits of large areas of certain geologic formations. The pre-Cambrian formation which has been longest exposed to erosion is, in the United States, a formation in which the gravity anomalies have a very strong tendency to be positive.

It is probable that the positive anomalies at stations in the pre-Cambrian formation are due largely to the density greater than 2.67 in the material above sea level and also to a density greater than normal in the strata in the upper crust below sea level. (See pp. 72 and 81.) No assumption need be made in regard to what is the normal density of the materials in a stratum at a certain depth below sea level. It is only the deviation from the normal with which we are concerned.

The mountain regions have a number of stations above the general level. They are all included in areas which have been and are now subject to erosion. There seems to be no relation between the anomalies and the topography in these cases.

In India there is a broad belt of recent geologic material running approximately east and west at the foot of the Himalaya Mountains. The stations on this recent formation, which no doubt is largely due to the deposition of materials eroded from the mountains, have in general negative anomalies. It is impossible that the addition of materials could make the pressure less than normal on the surface at the depth of compensation. We may therefore conclude that isostatic adjustment probably follows the deposition of materials and that the negative anomaly is probably due to the lighter materials in the upper crust. (See p. 82.)

There seems to be no effect due to the melting of the ice cap on the size and sign of the gravity anomaly. This is evidenced by a study of figure 11. If isostasy were perfect at the beginning of the ice age and if the isostatic adjustment kept pace with the accumulation of ice, there must have been an adjustment of opposite sign, upon the melting of the ice, for on an average the area that was covered by the sheet of ice is very close to a state of equilibrium now.

Chapter VI.-REGIONAL VERSUS LOCAL DISTRIBUTION OF COMPENSATION.

On pages 98 to 102 of Special Publication No. 10 there is a discussion of this subject based upon data for 41 stations in the United States and 4 stations not in this country. Similar data are now available for 124 stations in the United States.

The question to be considered is whether a topographic feature is compensated for by a deficiency of mass directly under it, or whether the topographic feature is compensated for by a deficiency of mass distributed through a more extensive portion of the earth's crust than that directly beneath the feature.

The theory of local compensation postulates that the deficiency of mass under any topographic feature is uniformly distributed in a column extending directly from the topographic feature vertically to a certain depth. In this discussion the depth is taken as 113.7 km . This depth is the one used in making the reduction for topography and isostatic compensation.

The theory of regional compensation postulates, on the other hand, that an individual topographic feature is compensated for by a deficiency of mass equal in amount to the topography, but of opposite sign, and that this deficiency is uniformly distributed from the surface to the depth of compensation, but has a horizontal extent greater than that of the feature itself.

The method of computing the data need not be given here, as the reader can learn of this by consulting pages 98 and 99 of Special Publication No. 10.

The table following gives the data for 124 stations in the United States. In column 1 are given the number and name of the stations. The effect of topography and compensation computed on the theory of complete local isostasy is given for each station in the second column. In columns 3,5 , and 7 are given the effect of local compensation out to the outer limits of zones K, M, and O , respectively, while in columns 4, 6, and 8 are given the effect of compensation computed upon the theory that the compensation is uniformly distributed horizontally to the outer limits of zones K, M, and O , respectively. In column 9 are given the Hayford anomalies based on complete local compensation. These are what are called the 1912 anomalies. (See p. 53.) They are computed by the 1912 Coast and Geodetic Survey formula and upon the assumption that the depth of compensation is 113.7 km . In the last three columns are given the anomalies for the three methods of regional distribution of compensation with a depth of compensation of 113.7 km .

Comparison between local and regional isostatic compensation.

Comparison between local and regional isostatic compensation-Continued.

Comparison between local and regional isostatic compensation-Continued.

Number and name of station	Effect of topography and compensation	Effect of compensation within outer limit of-						Hayford anomaly, 1012	Anomaly with regional compensation within outer limit of		
		Zone K (18.8 km.)		Zone M (58.8 km.)		Zone O (166.7 km.)					
		L.ocal	Regional	Iocal	Regional	Local	Regional				
81. Slason, Cal. 82. Rock Springs, Wyo.... 83. Paxton, Nebr. 84. Washington, \mathbf{D}. C. (Bu reau of Standards). 85. North Hero, Vt.	+0.015	-0.022	-0.026	-0.058	-0.059	-0.096	-0.098	-0.010	-0.006	-0.009	-0.018
	-. 0001	-. 036	-. 034	-. 093	-. 093	-. 189	-. 177	+.013	+.011	+.013	+.021
	+.002	. 014	-. 016	-. 041	. 043	-. 073	-. 077	-. 006	-. 004	-. 004	-. 002
	+. 012	000	-. 001	-. 001	-. 003	-. 005	-. 009	+.037	+.038	+.039	+.041
	-. 0000	. 000	-. 001	-. 003	-. 007	-. 012	-. 016	+.001	+.002	$+.005$	+.005
86. Lake Placid, N. Y... 87. Potsdam, N, Y. 88. Wilson, N. Y.. 89. Alpena, Mich... 90. Virginia Beach, Va.	$+.032$	-. 011	-. 012	-. 024	-. 021	-. 033	- . 020	+.006	+.007	+.003	. 007
	$\pm .004$	-. 002	-. 003	-. 008	-. 010	-. 017	-. 017	+.021	+.022	+.023	+.021
	-.002	. 000	-. 002	-. 003	-. 004	-. 011	-. 017	-. 010	-. 008	-.009	-.004
	. 000	. 004	-. 003	-. 010	-. 008	-. 016	-. 016	-. 020	-. 021	-. 022	-. 020
	$+.025$. 000	. 000	. 000	. 5081	. 000	+.002	-. 048	. 048	. 048	-. 050
91. Durham, N. C. 22. Fernandina, Fia Q3. Wilmer, Ala.. 94. Alicerille, Ala... 95. New Madrid, Mo.	+. 014	. 000	$\rightarrow .002$	-. 004	-. 006	-. 008	-. 010	+. 036	+.038	+.038	+.038
	+.017	. 000	. 000	. 000	. 000	. 000	+. 001	$+.010$	+.010	+.010	+.009
	+. 018	. 000	-. 001	-. 001	-. 002	-. 001	-. 002	-. 044	-. 043	-. 043	-. 043
	$+.008$. 000	-. 0001	-. 001	-. 033	-. 005	-. 0007	-. 017	-. 016	-. 015	-. 015
	$+.001$. 000	-. 002	-. 1001	-. 004	-. 007	-. 011	+.001	+.003	$+.004$	+.005
96. Mena, Ark. 97. Nacogdorhes, Tex 98. Alpine, Tex. 00. Farwell, Tex. 100. Guymon, Okls.	$+.015$	-. 004	-. 000	-. 012	-. 013	-. 020	-. 017	-. 0.52	$-.050$	-. 051	-. 055
	+.008	. 000	-. 002	-. 001	-. 004	-. 005	-. 008	-. 012	$\bigcirc .010$	-. 009	-.011
	+.033	-. 022	-. 025	-. 061	-. 083	-. 098	-. 085	+.021	+.024	$\pm .023$	$\pm .008$
	$\pm .001$	-.020	-. 01016	-.042	二.004	二.077	-.081	=.018	-.015	$=.015$	-. $\mathrm{-}$. 018
101. Helenwood, Tenn 102. Cloudland, Tenn. 103. Hughes, Tenn.. 104. Charleston, W. Va. 105. State College, Pa.	$+.015$	-. 007	-. 008	-. 020	-. 020	-. 033	-. 030	+. 040	+. 041	+. 040	+. 037
	+.13n	-. 019	-. 017	-. 039	-. 033	-. 058	-. 043	+.004	+.002	-. 002	-. 011
	+.053	-. 018	-. 018	-. 038	-. 034	-. 057	-. 044	-. 029	-. 029	-. 033	-. 042
	-. 010	-. inf	-. 005	-. 012	-. 015	-. 027	-. 035	-. 024	-. 023	-. 021	-. 016
	+.010	-. 005	-. $000{ }^{\text {a }}$	-. 016	-. 018	-. 030	-. 030	-. 021	-. 18	. 019	-. 021
103. Fort Kent, Me. 107. Prentice. Wls. 108. Fereus Falls, Minn 109. Sheridan, Wyo. 110. Boulder, Mont.	+.001	-.002	-. 003	-. 006	-. 0019	-. 016	=.017	-. 013	-. 012	-. 010	-. 012
	+.001	-.005	-. 006	-. 014	-.015	$=.028$	-. 0229	-..006	+.005	$\underline{+.005}$	$\pm .020$
	-.031	-.020	-. 028	-. 088	-.077	-. 120	-. 118	+.032	+.033	+.041	+.030
	. 007	-. 031	-. 032	-. 077	-. 074	-. 137	-. 139	-. 015	-. 014	-. 018	-. 013
111. Skyknmish, Wash. 112. Olympla, Wash. 113. Heppner, Oreg. 111. Truckee, Cal 115. Winnemucca, Nev	-. 047	-. 014	-. 018	-. 038	-. 038	-. 058	-. 047	-. 028	-. 024	-. 028	-. 039
	-. 012	. 004	. 000	-. 002	-. 003	-. 014	-. 025	+.083	+.033	+.034	+.04
	-. 007	-. 010	-. 010	-. 028	-. 029	-. 058	-. 067	-. 027	-. 027	-. 025	-. 016
	+.057	-. 035	-. 035	-. 085	-. 081	-. 129	-. 100	-. 028	-. 028	-. 032	-. 057
	-. 004	-. 022	-.023	-. 062	-. 005	-. 116	-. 128	-. 009	-. 008	-. 006	+.003
116. Ely, Nev. 117. Guerncey, Wyo. 118. Plerre, S. Dak. 119. Fart Dodge, Iow 120. Kelthsburg, IL	+.020	-. 038	-. 039	-. 094	-. 093	-. 159	-. 150	-. 021	-. 020	-. 022	-. 030
	-. 016	-. 022	. 024	-. 062	-. 0097	-. 117	-. 127	+.038	+.038	+.041	+.046
	-. 013	-. 007	-. 008	-. 021	-. 023	-. 042	-. 048	+. 014	+.015	+.016	+.020
	+.002	-. 004	-. 000	-. 014	-. 015	-. 026	-. 027	+.015	+.017	+.016	+. 016
	-. 003	$-.004$	-. 003	-. 009	-. 008	-. 016	-. 016	-. 008	-. 009	-. 000	$-.008$
122.122.12.14.	$+.103$	-. 004	-. 004	-. 010	-. 009	-. 018	-. 017	$+.002$	+.002	+.001	$+.001$
	+.011	-. 004	-. 005	-. 011	-. 012	-. 019	-. 018	+.011	+.012	+.012	+.010
	-.003	-. 001	-. 002	-. 008	-. 011	-. 020	-. 025	-. 043	-. 042	-. 040	-. 038
	+.003	-. 003	-.004	-. 011	-. 013	-. 020	-. 018	-.033	-. 032	-. 031	-.034
Mean with regand to sign. Mean without regard to s! gn.. Mean with resard to sign 3 Mean without regard to signa								-. 002	-. 001	-. 001	-. 002
								. 020			. 020
								. 000	+.001	+.001	-. 001
								. 018	. 018	. 018	. 019

amitting seattle stations.
If we ignore the two Seattle stations, which seems to be justifiable on account of their excessively large anomalies (see p. 53), we have means with regard to sign, which are zero or 0.001 dyne, for the four methods of horizontal distribution of the compensation. Also three of the methods have means without regard to sign of 0.018 dyne and one of them a mean of 0.019 dyne. These anomalies show that for the country taken as a whole, no one of the methods has an advantage over the others.

It can be readily understood that for a station on a plateau of considerable horizontal extent the effect of compensation should be the same by the several methods, for the amount of compensation under any portion of the area near the station would be the same for each. If the country has varied topography, then the effect of compensation will be different for the different methods of distribution. For instance, in a valley with mountains on either side the
effect of the compensation will be different if some of the compensation of the mountain masses is extended horizontally under the valley.

The decision as to whether we have local or regional compensation must depend upon whether any one method has a general application to a set of stations which exist under the same or similar conditions. For instance, if mountain stations hare smaller anomalies on an average, and if the mean of all these stations with regard to sign should be close to zero when reduced by a given method, then we should be justified in concluding that this method is based upon more nearly correct assumptions than a method which gives larger anomalies and a larger mean with regard to sign.

In order to make the regional method of reduction logical, the compensation of each topographic feature should be computed separately to the limits of the zone having the topographic feature at its center. The method of computation actually adopted may give very erroneous results. For instance, let us assume that the compensation is distributed regionally within zone 0 , with the station at its center. It may happen that the station is in a broad valley or on a plain with mountains surrounding it at a distance of about 167 kms . None of the compensation under the mountains would be taken into account in making the reductions, and the computed value of gravity would be too great. On the other hand, if the station were in the mountains, with valleys or plains just beyond the limits of zone O, then none of the compensation of the mountains would be distributed to the valleys or plains, and the computed value of gravity at the station would be too small. Therefore, in making the reductions by the regional method the compensation for each topographic feature should be distributed separately before making the computations to obtain its effect. This, of course, would be possible, but it would be such a laborious process that it would not be practicable.

RELLATION OF LOCAL-COMPENSATION ANOMALIES AND REGIONAL-COMPENSATION ANOMALIES TO THE TOPOGRAPEY.

The tables given in the following pages contain the anomalies computed by the lucal and the three regional methods, with the stations arranged according to the same topographic groupings as are shown on pages 63 to 67.

Local and regional anomalies at 18 coast stations arranged in the order of their distances from the 1000 -fathom line.

Number and name of station.	Fisyford anomaly, 1912 (local compensation)	Anomaly with regional compensatlon within outer fimit of -			Number and name of station	Hayford anomaly, 1912 (local compensation)	Anomaly with regional com pensation within outer		
		Zone K	Zone M	Zone 0			Zone K	Zone $\mathbf{4}$	Zone 0
54. San Francisco	-0.023	-0.023	-0.022	-0.047	28. Hoboken, N. J	+0.024	+0.024	+0.025	+0.088
18. Beaufort N.	-. 021	-. 021	-. 021	-. 033	66. Compton, Cal.	-. 050	-. 049	-. 048	-.037
80. Astorls, Ore	-. 013	-. 013	-. 010	-. 028	2. West Palm Beach,	+.018	+.017	+.016	+.016
90. Virginia Beach,	-. 048			$=.050$	39. Punta Gorda, Fla.	+.010	+.010	+.010	+.010
92. Fernandina, Fla	+.010	+.010	+. 010	$+.009$	29. Boston, Mass.	$+.005$		$+.008$	+.008
1. Key West, Fla	+.008	$+.008$	$+.006$	-. 003	30. Cambridge, Mass	$+.005$	+.005	+.006	+.00\%
9. Point Isabel, Tex	+. 027	+.027	+.027	+.024	17. Charleston, 8.	-.021	-. 021	-. 021	-.022
3. New Orleans, Le	-. 013	-. 013	-. 013	-. 013	7. Galveston, T	-. 009	-. 009	-.009	-. 000
27. Apalachicols, N ,	+.000	+.000	+.000	+.000	Mean with regard to sign	-. 004		-. 004	-.006
2.					Mean without regard to sign..		. 018	. 018	. 020

For coast stations the mean anomalies with and without regard to sign are the same for local and for regional compensation through zones K and M. In no case does a regional anomaly: with compensation out through zones K and M differ more than 0.003 dyne from a local com. pensation anomaly. This is as one might expect, for the topography is low and the water within zone M is comparatively shallow, so the distribution of compensation regionally can have little influence on the value of the effect of the compensation.

The anomalies for regional compensation to the outer limit of zone 0 have decidedly larger negative values than those for local compensation at San Francisco (No. 54), at Beaufort (No. 18),
and at Astoria (No. 80), while at Key West (No. 1) the anomaly changes from +0.008 to -0.003 . These decided differences are to be expected for a portion of the compensation under the water, which is of positive sign, is distributed through the zone, and as the vertical component of its attraction is greater for the regional distribution than for the local it increases the computed value of gravity at the station and hence makes the anomaly g - g_{c} have a smaller positive or a larger negative value.

The anomaly at Compton (No.66) is changed in the opposite direction. This is due to the distribution of the compensation for the high land, which decreases the computed value of the intensity of gravity at the station.

The mean anomaly with regard to sign for regional compensation to the outer limit of zone O is -0.006 , while the mean for local compensation is -0.004 . The means without regard to sign for these anomalies are, respectively, 0.020 and 0.018 . The differences are small but they do not favor distribution of compensation regionally to the outer limit of zone 0 .

The reason why the mean with regard to sign is negative for the Hayford anomalies at coast stations is discussed under the heading "Relation between the gravity anomalies and the geologic formation." (See p. 70.)

The following table gives the local and regional anomalies at stations near the coast, the stations being arranged in the order of their distance from the open coast. These distances are given in the table on page 64.

Loml and regional anomalies at 25 stations noar the coast, arranged in the order of their distances from the open coast.

Sumber and name of station	Hayford anomaly, 1912 (local compensation)	Anomaly with regional compensation within outer limit of-			Number and name of station	Hayford anomaly, 1911 (local compensation)	Anomaly with regional compensation within outer limit of-		
		Zone K	Zone M	Zona 0			Zone K	Zone M	Zone O
31. Calals, Me.	-0.00R	-0.008	-0.007	-0.006	123. Alluany, N.	-0.043	-0.042	-0.040	-0.038
25. Princeton,	-. 019	-. 018	-. 017	-. 016	16. MeCormiey, B. C	+.015	+.015	$+.016$	$+.018$
03. Wilmer, 1 la	-. 044	-. 043	-. 043	-. 043	10. Austhn, Tex. (Capitol)	-. 0008	-. 0008	-. 007	-.00i
23. Maltimore, Md	-. 011	-. 010	-.009	-. 007	11. Austin, Tex. (University).	-. 010	-. 010	-. 009	-. 0009
29. Worcester, Mas	-. 020	-. 019	-. 019	$-.021$	19. Charlottesville, Vs.	-. 013	-. 012	-. 012	-. 000
24. Philadelphta, Pa	+.022	+.023	$+.003$	+.025	32. Ithaca, N. Y	$-.023$	$-.021$	$-.021$	- . 020
124. Port Jervis, N. Y	$-.033$	-:032	-. 031	-. 034	94. Alicevillo, Al	-. 017	$-.016$	-. 015	-. 015
81. Bisson, Cal......	$-.010$	-. 006	-. 009	-. 018	62. Kerrille, Toy	$+.051$	$+.032$	+.032	$+.025$
21. Washington, D. C. (Coast					103. Fort Kent, M	-..013	+ +.012 +.017	+. 010	-. 012
\& Geodetic Survey Of fice) \qquad	+. 037	$+.038$	$+.039$	$+.041$	6. Rayville, La.	$+.016$	+. 017	+.017	+.019
22. Washington, D.C. (Snithsonian Institution)	$+.039$	$+.040$	$+.041$	+.043	Mean with regard to sign. Mean without regard to	-. 002	$-.001$	$-.001$	$-.001$
84. Washiogton, D. C. (Bu-									
reau of Stsndards).	+.037	+.039	+.039	+.041					
91. Durham N. C.	$+.033$	+.038	+.088	+.038					
95. Laredo, Tex.	-.020	-.020	-. 019	-. 020					
97. Nacogdeches, Tox.	+.011	+.003	+..011	+.015					

There are only three stations at which there are decided differences between the local and regional anomalies in the above table. These are Sisson (No. 81), where the change is 0.008 , Yuma (No. 65), where it is 0.006 , and Kerrville (No. 62), where the change is also 0.006 .

As practically all of the 25 stations under consideration are in topography with little relief, one would expect the anomalies to be little changed by the different methods of making the reductions. The mean anomalies with and without regard to sign have a total range of only 0.001 . These stations, therefore, give no information as to whether one of the methods has any advantage over any other one.

The following table gives the local and regional anomalies at 39 stations in the interior which are not in mountainous regions. The stations are arranged in the order of their elevation above sea level. These elevations are given in the table on page 64.

Looal and regional anomalies at 39 stations in the interior, and not in mountainous regions, arranged in the order of elevation.

Number and name of station	Hayford anomaly, 15L (local compensation)	Anomaly with regional compensation within outer fimit of -			Number and name of station.	Haytord nomaly, 1012 (local compensation)	Anomaly with regional compensation within outerlimit of		
		Zone K	Zone M	Zone 0			Zone K	Zone M	Zone 0
95. New Madri	$+0.001$	+0.003	+0.004	+0.005	122. Angola, Ind	+0.011	+0.012	+0.012	$+0.010$
88. Wilsou, N. Y	-. 010	-. 0008	-. 009	$\underline{-.004}$	15. Atlanta, (a)	$\underline{-.023}$	± 02	$\underline{+0.021}$	$\underline{+0.028}$
18. Little Rock, A	$+.030$	$+.032$	$+.083$	+.036	119. Fort 1 oden Io	+. 015	+.017	+. 016	+.016
87. Potsdam, N. Y	+.021	+.022	$+.023$	+.021	108. Fergus Falls, Min	-. 008	-. 005	-. 005	-.008
35. Terre Haute, In	. 009	-. 009	-. 008	-. 006	9. Mena, Ark	$-.052$	-. 050	-. 051	-.065
38. St. Louis, Mo	-. 005	-. 004	-. 0003	-. 003	60. Mitchell, 8. Dak	+.001	+.002	+.004	+.005
120. Keithsburg,	-.008	-.007	-. 007	-. 006	58. Ely, Minn	$+.023$	+.025	$+.028$	+.021
89. Alpena, Mic	-. 020	-. 021	-. 022	-. 020	118. Plerre, S. Da	$+.014$	+.015	+.016	$+.080$
36. Chicago, Ill	-. 007	-. 008	-. 008	-. 006	57. Iron River, Mich	+.038	+.039	+.038	$+.031$
104. Charleston,	-. 024	-.023	-. 021	-. 016	40. Ellsworth, Kan	+.014	+. 015	+.015	+.017
14. Columbls, Tenn	+. 026	$+.028$	+.026	$+.023$	107. Prentiss, Wis	+.024	+.025	$+.024$	+.020
33. Cleveland,	$-.003$	-. 003	-.003	-.003	76. Bismarck, N. D	+.002	+.003	$+.004$	+.006
73. 1lenison, Te	+.005	+.005	+. 004	+.004	61. 8weet water, Tex	-. 029	-. 028	-. 028	-.029
121. Grand Rapld	+.002	+.003	$+.003$	$+.003$	77. Hinsdale, Mont	+.029	+.031	+.033	+.038
12. Mcalester, 0	-. 027	-. 028	-. 027	-. 027	72. Shamrock, Te	+.032	+.031	+.032	+.083
59. Pembina, N. Dak	+. 019	+. 019	+.020	$+.023$	88. Paxton, Nebr	-. 006	-. 004	-. 004	-. 002
34. Clncinnati, Ohlo	-. 019	-. 019	$-.020$	-. 020	100. Guymón	-. 017	-. 015	-. 013	-. 013
74. Minneapolis,	+. 059	+.060	+.060	+. 061	41. Wallace, K	-. 012	-. 012	-. 012	-. 011
37. Madison, W is	-. 005	-. 004	-. 004	-.006	99. Farwell, T	-. 016	-. 015	-. 015	-. 018
39. Kansas City, Mo	-. 016	15	15	-. 015					
					Mean without regard to	+.001	+.002	+.002	+.003
					sign	. 017	. 018	. 018	. 017

The differences between the anomalies for the local and for the regional compensation to the outer limits of zones K and M are very small, there being only two as great as 0.004 and only five others as great as 0.003 .

The differences between the anomalies for local compensation and for regional compensation to the outer limit of zone O are only slightly larger, the maximum difference being 0.009 .

As with the stations back from the coast, the differences between the local and regional anomalies may be expected to be small, for the topography in the vicinity of these stations is fairly level.

The means without regard to sign for the different methods are practically the same, while the means with regard to sign differ only slightly. It must be considered that there is no evidence here in favor of either method, although the slight differences in the means with regard to sign favor the local distribution.

There are 22 stations in the United States in mountainous regions and below the general level, the anomalies for which by the local and regional methods of distribution of compensation are given in the following table. The elevations of the stations and the distances of the stations below the general elevation are given in the table on page 66.
Looal and regional anomalies at 22 stations in mountainous regions and below the general level, arranged in the order of their distances below the general level.

Number and name of station		Anomaly with reglonal compensation within outerlimit ot-			Number and name of station		Anomaly with reglonal com. pimit of within outar imit of		
		zone K	zone M	Zone O			Zone K	Zone M	Zone 0
	$\begin{aligned} & -0.013 \\ & =.001 \\ & \mp+.013 \\ & +.007 \end{aligned}$	$\begin{aligned} & -0.013 \\ & =.013 \\ & +.0 .03 \\ & +.008 \end{aligned}$	$\begin{aligned} & -0.013 \\ & -.001 \\ & \hline+.002 \\ & +.008 \end{aligned}$	-0.020 $=: .009$ $\mp+.001$ +.013 $=$.		$\begin{aligned} & +0.016 \\ & +0.010 \\ & +0.008 \\ & +.002 \end{aligned}$	+0.012 $\pm .001$ $\pm .002$ $\pm .000$.+	$\begin{aligned} & +0.013 \\ & +.007 \\ & \pm .006 \\ & \hline .006 \end{aligned}$	$\begin{aligned} & +0.016 \\ & +=0.002 \\ & \pm .021 \\ & \pm .018 \end{aligned}$
113. Apppner, Orea. 110. Boulder, Mont.	$\begin{array}{r} \text { 耳.027 } \\ \pm .00315 \\ \hline .015 \end{array}$	$\begin{array}{r} \text {-.073 } \\ \hline .0 .03 \\ \hline .014 \end{array}$	$\begin{aligned} & -.025 \\ & \pm .004 \\ & \hline .018 \end{aligned}$	$\begin{array}{r} -.016 \\ \pm .011 \\ \hline .013 \end{array}$	46. Grand Junction, Colo. 47. Green River, Utah..	$\pm .021$	$\pm .028$	$\pm .0014$	+.001
111. Blykromish, Wash.	〒.033	₹.0038	¢	₹ . 0398	$\begin{aligned} & \text { Mean with regard to } \\ & \text { sign..i.......................... } \end{aligned}$	000	+.002	+.008	+.008
	$\begin{array}{r} \text { } \begin{array}{r} .009 \\ \mp .032 \\ \pm .013 \\ \pm .002 \end{array} \\ \hline .007 \end{array}$	$\begin{array}{r} \text {. } 008 \\ +083 \\ \pm .001 \\ \pm .003 \end{array}$	$\begin{aligned} & =\begin{array}{r} .006 \\ \pm .013 \\ \pm .013 \\ \pm .0028 \end{array} \\ & -.008 \end{aligned}$	$\begin{aligned} & \pm .003 \\ & \pm .003 \\ & \pm .018 \\ & \pm .0018 \end{aligned}$. 017	. 017	. 018	. 019

The anomalies for the regional compensation to the outer limits of zones K and M are only slightly different from the anomalies for local compensation and the means with regard to sign show only a slight advantage for the local compensation method. The means without regard to sign for the three sets of anomalies are practically the same. But for regional compensation to the outer limit of zone O , there are four anomalies which are larger than the maximum anomaly for local compensation, 0.036 . While the average anomaly without regard to sign is nearly the same for the two methods, the mean with regard to sign is zero for local compensation and +0.006 for regional compens ition to the outer limit of zone O. This, it is believed, is comparatively strong evidence in favor of local distribution of compensation. This is especially true as the mean with regard to sign for 122 stations, regional compensation considered to the outer limit of zone O (see bottom of table on p. 87), is -0.001 . The mean in the above table is, therefore, 0.007 different from the mean of all.

As the compensation of the higher land is brought closer to the station it is natural that the computed gravity at the stations should be less than for the local distribution of the compensation.

The last table of this series gives the local and regional anomalies at 18 stations in mountainous regions which are above the general level. The elevations of the stations above sea level and the distances above the general level are given in the table on page 66.

Local and regional anomalies at 18 stations in mountainous regions and above the general level, arranged in the order of their distanots above the general level.

Number and name of station	Hayford anomaly, 1912 (local compensation)	Anomaly with regional compensation within outer fimit of-			Number and name of station	Hayford ${ }_{1812}$ anomaly, (local compensation)	Anomaly with regional compensation within outer limit of-		
		Zone K	'Zone M	Zone 0			Zone K	Zone M	Zone 0
71. Las Vegas, N. Mex	+0.003	+0.002	+0.003	-0.007	86. Lake Plack, N. Y	+0.006	+0.007	+0.003	-0.00i
116. Ely, Nev.	-. 021	-. 020	-. 022	-. 030	103. Hughes, Tena	-. 029	-. 029	-. 033	-. 042
101. Helenwood, Tenn.	$+.040$	+.041	$+.040$	$+.037$	75. Lead, S. Dak	$+.052$	+.053	+.049	+.039
32. Lower (ieyser Basin, W yo. 31. Norris Coyer Bastr, W yo.	-.001	+.001 +.083	+ +.000 +.022	-. 009	114. Truckee, Cal	+.001	$\begin{array}{r}\text { + } \\ +.001 \\ \hline .028\end{array}$	+.001	$=.007$
48. Pleassant Valley Junction, Utah.	+.004	+.005	+.001	-. 008	102. Cloudland, Tenn.	-. 0004	-.008	-.011	-. 018
30. Grand Canyon, W yo	$\underline{-.002}$	-. 0001	-. 001	-. 017	43. Pikes Peak, Co	+.021	+.013	+.008	+.004
64. Apine, Tex	+.021	\pm	\pm	$\pm .008$	Mean with regard to si	+.003			
20. Deer Park, Md.	+.010	+. 012	+.007	+.001	Mean without regard to sign.	+.008 .018	+.008 .018	.000 .017	-.010 .020

This table gives strong evidence that the local compensation and the regional compensation to the outer limits of zones K and M are much nearer the truth than regional compensation to the outer limit of zone 0 . There is some slight evidence in favor of regional compensation to the outer limit of zone M.

The mean anomaly without regard to sign for regional compensation to the outer limit of zone O is only 0.002 larger than for the local method, but the mean with regard to sign is -0.010 while for the local method it is only +0.003 , and the former is 0.009 different from the mean for 122 stations, -0.001 (see p. 87).

The progressive decrease algebraically in the regional anomalies as the radius of distribution of the compensation is increased is what one would naturally expect, for as the compensation is placed farther and farther from the station it has less effect, and so the computed gravity' is increased and the anomalies are decreased algebraically.

CONCLUSION.

The evidence and analysis given on pages 85 to 91 lead to the definite conclusion that the local distribution of compensation is much nearer the truth than the regional distribution of the compensation to a distance of 166.7 km . from the stations. This conclusion is based upon the great difference of 0.016 dyne between the mean zone-O anomaly for stations in moun-
tainous regions below the general level and the mean zone-0 anomaly at stations in mountainous regions above the general level. The difference between the mean anomalies for the local method for these two groups of stations is only 0.003 .

There is no evidence which favors the local as against the regional distribution out through zones K and M . Whether there is some intermediate zone between 58.8 and 166.7 km . which would give as good results as the local distribution could be determined only by further computations.

The discussions under other headings in this report show that the cause of the anomalies is local to a great extent. We are forced to believe that the anomalies can not be materially reduced by any method of regional distribution of the compensation of general application. This fact is clearly shown in the preceding tables, for only occasionally is a large localcompensation anomaly greatly reduced by a regional method of distributing the compensation. More often the regional distribution increases the anomaly.

As stated on page 88, the method employed for the regional distribution is somewhat illogical in that the compensation for each topographic feature is not distributed separately, but the author believes the above conclusions would not be changed if the ideal method were employed.

Chapter VII. EFFECT OF THE ELRVATION OF THE STATION UPON THE INTENSITY OF GRAVITY.

In computing the correction to the intensity of gravity due to the elevation of a station above sea level the well known formula

$$
c=-0.0003086 H
$$

was used, c being the correction for height in dynes and H the elevation in meters.
The constant factor of this formula was not questioned during the investigation until it was found that the gravity anomalies were quite different at pairs of stations near each other horizontally, but with a considerable difference in elevation. In the United States there are 3 such pairs of stations and from the report of the International Geodetic Association 9 sets in Europe were selected and the Hayford anomalies were computed for each station involved. Later it was found that there are 2 pairs in India.

There are shown in the following table the data for each of the sets. In two cases there are three stations in a set.

The density is given for information only. Its value is taken from reports of the International Geodetic Association. The corrections for topography and isostatic compensation are all based on the same density, 2.67.

Sets of adjacent stations having great differences of elevation.

Sets of stations	Latitude	Longitude	H	Density	$0-90$	$\begin{aligned} & \text { Haylord } \\ & \text { anomaly, } \\ & 1012 \end{aligned}$
	- ${ }^{\text {c }}$	- ${ }^{1}$				
1 \& Stiliserjoch, Austria,	4831.8	1027.4	$\begin{aligned} & 2760 \\ & 2188 \end{aligned}$	2.4	$\underline{-0.010}$	-0.018
${ }^{1}$ Franzenholho, A ustria	4632.0	1029.0	2188	2.4		-. 022
2 Schneokoppe, Germany	8044.2	1544.6	1805	2. 73	+.029	+.021
TAlter Bruch, Germany.	5045.7	1544.6	917	2.65	+.019	$+.011$
3) Brocken, Germany..	5148.0	1037	1140	2.6	+.053	+.045
${ }^{3}$ Scharfenstein, Germany	5160.0	1036.0	623	2.6	+.052	+.044
f Naye, 8witzerland.....	4830.6	658.7	1987	2.7	+.026	
- Villenouve, Switzarland.	4824.1	685.7	376	2.6	+.019	+.011
8 (Chaumont, 8 witzerland.	4701.4	657.1	1018	2.7	$+.044$	$+.036$
(Nevanburg, 8witzerland	4700.1	657.3	487	2.7	+.032	+.024
Gornergrat, 8 witzeriand.	4589.0	746.8	3016	2.73	+.053	+.045
6 Riffelberg, 8witzerland.	4559.6	745.3	2568	2.74	+.053	$+.047$
Z armatt, $^{\text {Ewitzerland... }}$	4601.6	745.0	1603	2.76	+.044	$+.036$
- Beialp, Switzerland	4675.5	759.6	2132	2, 6	+.010	$+.002$
${ }^{1}$ Brig, 8witzerland.	4619.7	800.4	683	2.72	-. 004	$-.012$
8.Eggishorn, 8witzerland.	4625.2	800.8	2187	2.65	+.013	$+.005$
FFiesch, Switzerland.	4624.2	808.1	1089	2.6	. 000	-.008
\% Sanetsch, Switzerland	4619.3	717.2	295I	2.70	+.020	+. 012
Tastoig, Switzerland..	4627.2	716.2	1185	26	+.021	+.018
10 Pikes Peak, Colo.	8800.3	10502.0	4293	2.62	+.029	$+.021$
10 Colorado 8pringe, Colo	3850.7	10449.0	1811	2.1	+.001	-. 007
11 Yavapal, Aris.	3603.9	11207.1	210		$+.000$	+.001
${ }^{11}$ Orand Canyon, Ariz	860.3	11200.8	500		-.002	-. 010
12/Cloudland, Tenn	250.2	5007.9	1890		+.012	$+.004$
Rughos, Toun.	8601.5	8207.2	994		-. 021	-.029
(Mussoorlo (Camels Beck), India.	3027.6	7804.5	2110	(2.8)	+.055	
13 Rajpur Indis.	8024.2	7805.8	1012	2.5	+.027	$+.019$
Dotars Dun, Indis	8019.6	780.2	60	2.45	+.008	-.002
${ }_{24} \mathrm{Y}$ ercand, Indis.	21.40	7812.5	1802	2.7	-. 031	-. 039
(Galem, India.	11.60 .1	7800.2	280	2.6	-. 048	-. 050

The following table shows the difference in elevation of the stations forming a set and the differences in the anomalies for each set. There are two cases where there are three stations in a set. In one case (set No. 6) the mean of the two high stations was used in getting the differences in elevation and anomaly and in the other case (set No. 13) the mean of the two low stations was used:

Differences of elevations and anomalies for sets of near stations.

It is seen that in only one case is the difference in anomaly negative, and this difference is only 0.001 dyne. On an average a difference in elevation of 100 meters causes a difference in the anomalies of 0.0013 dyne; and a difference of anomaly of 0.0010 dyne is caused by a difference in elevation of 79 meters.

If a change of 0.0000130 in the constant term of the height formula were made, the resulting formula, $c=-0.0002956 H$, would make the total difference in the anomalies with regard to sign equal to zero.

The derivation of the constant term of the formula from the observed value of gravity at 124 stations in the United States made its value 0.0003066 , with a probable error of ± 0.0000017. That the height formula is in error by such an amount as the 0.0000130 indicated by the above data is improbable for two reasons: First, because if the changed height formula were used in computing the correction for elevation for the United States stations, there would be a strong relation between the elevation of the stations and the gravity anomaly. The higher the station the less algebraically would be its anomaly, while with the unchanged formula there is no apparent relation between the anomalies and the elevation. Second, a very careful and thorough investigation was made by W. D. Lambert, of the Survey, which failed to disclose any flaws in the derivation of the constant factor of the formula.

An investigation of the subject along other lines was made, and it was found that there are several causes to which may be due some of the difference in the anomalies at high and low stations which are horizontally close together.

First. In general the higher station of a pair is on a mountain peak which has comparatively steep slopes. The corrections for topography were computed by the zone method, the average elevation in the zone being used in the computations. This has the effect of lessening the effect of the closer part of the topography in the zone, as the leveling method involved in assuming a uniform average level for the whole zone lowers the nearby topography and increases its distance from the station. A test was made of the effect of using narrower zones from the station out to a distance of 2.29 km . The tables for these zones are shown on pages 11 to 18 . When the effect of the topography near the high station was computed with the narrower zones for station Pikes Peak, a difference of 0.0033 dyne was found. At station Yavapai, Ariz., the difference was found to be 0.0031 . The sign of this difference is such as to bring the two anomalies for a pair of stations nearer together.

Second. It may be assumed that in general the higher station of a pair is on topography of greater density than the lower one. The former is usually on a mountain peak which is conposed of well-compacted matter, while the lower station is in a valley or in the foothills, where the material is not so well compacted and has much more porosity than the higher mountain mass. It is sometimes true that the two stations of a pair are on different geologic formations. The higher station in general is on the older formation with a greater density.

If it is assumed that the high station is on topography which has a density 0.10 greater than the assumed normal (2.67) and that the lower station is on material 0.10 less than normal, and that these densities obtain for all the topography above sea level, then the topography for the area near the high station would have a greater effect than that which has been used in this investigation, and, conversely, the topography at the lower station would have a less effect than normal.

This is shown in a clear manner by making the changes in density at Pikes Peak and Colorado Springs. The change in the effect of the topography within a radius of 3.5 km . due to increasing its density 0.10 is +0.0085 dyne, while the change from decreasing the density at Colorado Springs by 0.10 is -0.0057 . The sum of the two changes in topographic effect is +0.014 . The difference between the anomalies at these two stations is 0.028 dyne. The changes in density in the topography near each of the stations reduced by one-half the difference between the anomalies. The changes at the two stations Cloudland and Hughes would be +0.0054 and -0.0035 , respectively, and the difference of the anomalies at the two stations would be reduced from 0.033 to 0.024 .

In practically all cases the difference in the existing anomalies at two close stations, as shown in the table on page 93 , would be reduced by increasing the density of the topography at the high station and decreasing the density of the topography at the low one. The only exception to this general rule is pair No. 9 in the above table. Here the lower station has the larger anomaly, but the difference between the two anomalies is only 0.001 dyne.

It is scarcely possible to make a correction for erroneous density of topography used in the regular reductions, for even if the density of the surface rocks were known one would not be justified in assuming that the density of the surface obtained to any given depth below the surface.

Third. Another correction could be applied to the combined effect of topography and compensation at a station which would make the difference smaller between the anomalies at a pair of stations close together horizontally but with difierent elevations. In making the tables for computing the effect of topography and compensation it was assumed that the compensation began at the surface and extended to a depth of 113.7 km . This was done to facilitate the computation, although it does not seem to be a reasonable assumption. It is more probable that the compensation begins at sea level or at some lower depth. If it is assumed that the compensation begins at sea level, then the effect of compensation for the topography near the station above sea level is less than when computed by the usual method.

If the average elevation of the topography in a near zone is 1900 meters (6200 feet), then the change in the effect of the compensation will be one-sixtieth of the effect of the topography in that zone. The approximate general rule is that the effect of compensation of topography near the station will be reduced by an amount equal to the product of the elevation of a zone by the correction for topography for the zone divided by the depth of compensation.

Let us apply this at Pikes Peak. The elevations for zones C, D, E, and F are, respectively, $4300,4100,3900$, and 3700 meters. The corrections for topography for those zones are, respectively, $+0.0165,+0.0325,+0.0545$, and +0.0639 dyne. The change in the compensation for the four zones is 0.008 , and this is the amount the effect of compensation at Pikes Peak is reduced. There would be a further reduction in the compensation if the test were made for a few zones beyond zone F. The effect of the change at a single station becomes zero in general at about zones J or K. For the outer zones the effect is small for any one station and for a pair of stations the effect on the relative anomaly is negligible.

At Colorado Springs, the lower station of the pair, the average elevation of the topography out to the limits of zone F is about 1800 meters, and the change in the effect of compensation by having it distributed from sea level for zones A to F is 0.002 dyne. The total effect on the difference in the anomalies of changing the position of the upper surface of the compensation at Pikes Peak and Colorado Springs would be about 0.010 dyne. The reduction of the differences at other pairs of stations in this country and abroad would be less than this, in most cases much less.

If the depth of compensation were materially reduced, say, to 60 km ., then the effect of starting the distribution of the compensation at the sea level rather than at the surface would he about double what it would be for the depth 113.7 km .

The table on pages 103-105 shows that if the depth of compensation were 127.9 km . the difference in the anomalies at Pikes Peak and Colorado Springs would be reduced to 0.026 dyne, :nd it would be further reduced to 0.021 dyne if the depth were 184.6 km . If the depth were 42.6 km ., the difference in the anomaties at those stations would be increased to 0.051 dyne. For 85.3 km . it would be 0.033 dyne. A change in the depth makes practically no change in the difference between the anomalies at the pair of stations Cloudland and Hughes. The discussion on page 111 indicates that a depth greater than 130 km . is very improbable.

If the compensation has a regional distribution rather than a local distribution, then the anomaly will be reduced at Pikes Peak, it will remain about the same at Colorado Springs, and the difference in the anomalies at the two stations will be considerably reduced. If the distrihution of compensation is regional to the outer limit of zone $O(167 \mathrm{~km}$.), the difference in the anomalies will be reduced from 0.028 to 0.012 dyne. It would be 0.016 dyne for regional distribution to the outer limit of zone $\mathrm{M}(59 \mathrm{~km}$.). The regional distribution of the compensation does not materially reduce the difference in anomalies for the pair of stations Cloudland and IIughes and for the pair Yavapai and Grand Canyon. The effect of regional distribution at the pairs of stations not in the United States has not been computed. On page 91 it is shown that the regional distribution of the compensation to a distance of 167 km . is not so probable as the regional distribution to a much shorter distance or as the local distribution of the compensation.

We may conclude that the systematic difference in the anomalies at a pair of stations close together, with one high and one low station, is not due to error in the height formula nor to error in the assumed depth of compensation, but that it is due in part to errors in the assumed densities of the topography under the stations, to deviations from the normal densities in the material below sea level and in the upper crust, to the use of wide zones in computing the effect of the topography, to the probably erroneous assumption that the compensation begins at the surface of the topography, and to the assumption of local distribution of the compensation. That the cause is located in the upper crust rather than in the lower crust is evident from the fact that any deviation from the normal conditions in the lower crust would affect each of the two stations of a pair equally, or very nearly so. It is probable that the effect of any one of these causes varies considerably for the different pairs. It would be impossible to arrive at the true effect of each one of the causes for any pair except the effect of the use of the wide zones. The difference in the anomalies is probably due to the combined effect of all of the causes.

Chapter VIII.-EFFECT ON THE INTENSITY OF GRAVITY OF CHANGES IN THE DEPTH OF COMPENSATION.

On pages 103 to 105 of Special Publication No. 10, "The effect of topography and isostatic compensation on the intensity of gravity," is a discussion of some preliminary tests of the effect of a change in the assumed depth of compensation on the gravity anomalies. The conclusion reached was that the available gravity stations probably would not determine a depth that could compete in accuracy with the depths determined from deflections of the plumb line. The further accumulation of material and the further study of the question have brought about a partial revision of this conclusion.

To study the effect of a change in the depth of compensation it is necessary to have the effects of topography and isostatic compensation for different depths. To make these computations with complete theoretic accuracy would require a great amount of labor, even if there were available complete sets of tables similar to those on pages 30 to 47 of Special Publication No. 10, but computed for depths other than 113.7 km . This labor was greatly lessened by the adoption of the approximations below. The results of the computations are given on pages 100-102.

The effect of topography is not altered by a change of depth, but the compensation, and therefore the resultant, changes with the changing depth. The method of computation consists in multiplying either the compensation or the resultant of the topography and compensation by a factor depending on the depth and on the zone involved.

In the tables on pages 30 to 43 of Special Publication No. 10, the correction for elevation of the station above or below the compartment is, strictly speaking, the correction to the combined effect of topography and compensation, but most of the correction is due to the change in the effect of the topography and the part due to the change in the effect of the compensation is relatively small. The change with changing depth in the part due to compensation will generally be smaller still. Neglecting this-that is, considering the compartment to be on the same level as the station-the formula for the compensation C is

$$
C=2 \pi k \delta\left\{c_{2}-c_{1}-\sqrt{c_{2}^{2}+t^{2}}+\sqrt{c_{1}^{2}+\overline{t^{2}}}\right\}
$$

in which k is the gravitation constant, c_{1} and c_{2} are the inner and outer radii of the zone, and t is the depth of compensation. δ is the density of compensation and for land compartments is given by the formula, $\delta=2.67 \frac{h}{t}$, where h is the mean elevation of the compartment, the density of the topography being assumed as 2.67. If C_{o} denote the compensation for depth 113.7 and C_{d} the compensation for any other depth, it is evident that $\frac{C_{d}}{C_{0}}$ or $\frac{C_{d}-C_{o}}{C_{o}}$ is independent of h, the elevation of the compartment, and also of the assumed density of the topography, and depends only on the two depths involved. The quantity $\frac{C_{d}-C_{0}}{C_{0}}$ was computed for an arbitrary elevation of comp artment but applies equally well to any elevation and was so used. It is the factor which multiplied by C_{o} will give the correction to be added algebraically to C_{o} to give C_{d}, the compensation at the new depth. The values of $\frac{C_{d}-C_{o}}{C_{o}}$ for various depths of compensation are shown in the following tables for zones A to O . In interpolating values of $\frac{C_{d}-C_{o}}{C_{o}}$ for depths near 113.7 km ., it should be remembered that $\frac{C_{d}-C_{0}}{C_{0}}$ is zero for this depth.

Factors，$\frac{C_{d}-C_{0}}{C_{0}}$ ，used in computing compensation for the given depths．

Zone	Factors lor depth of compensation of－					
	42.6 km ．	56.9 km ．	85.3 km ．	127.9 km ．	156.25 km ．	184.6 km ．
	$\stackrel{+1.67}{+1.67}$	+1.00 +1.00	+0.33 +.33	－0．11	－0．27	$=0.38$
	＋1．60	$+1.00$	＋．33	－． 11	二．27	－．38
	＋1．65	＋1．00	＋．33	－． 11	$=.27$	＝．88
E．	＋1．63	＋．88	＋．33	－． 11	－． 27	－． 38
F．	＋1．60	＋．97	＋．83	－． 11	－． 27	－． 38
	＋1．49	＋．92	＋ 82	－． 11	＝．26	二．37
	＋1．39	＋．87	＋． 31	－． 10	－． 28	－．37
J．	＋1．24	＋．80	＋． 20	－． 10	－． 25	－． 36
K	＋1．03	＋． 70	＋． 27	－． 10	－． 24	
				＝．09	$=.22$	＝． 38
	$\pm .23$	$\pm .24$	＋． 14	二．08	－：．07	＝． 214
	－． 45	－． 31	－． 11	＋．03	＋：06	

The factors in this table were also applied to ocean compartments，although the com－ pensation which begins at the bottom of the ocean is never on the same level as the station． The error，however，is not large．For ocean compartments the density is 0.615 times that of a land compartment when the height of the land is equal to the depth of the ocean compartment． The sign of the density is reversed．

For the outer zones，numbers 1 to 18，a correction factor is applied to the resultant effect， R ，of the topography and compensation．This resultant is proportional to the elevation of the compartment，or

$$
R=p h *
$$

in which h is the elevation of the compartment and p is a factor of proportionality given in the tables in Special Publication No．10，and there computed by the method of quadratures．\dagger If a subscript zero denote the values of R and p for depth 113.7 km ．，and the same letters with subscript d the corresponding quantities for another depth，then

$$
\frac{R_{d}-R_{0}}{R_{o}}=\frac{p_{d}-p_{0}}{p_{o}}
$$

or the correction factor，$\frac{R_{d}-R_{0}}{R_{o}}$ ，is independent of the height of the compartment，though for con－ venience in computing a standard height was assumed．The values of this factor for various depths are given in the following table．The factors are to be multiplied by the resultant of the topography and compensation for depth 113.7 km ．in the same way as the factors in the pre－ ceding table are to be multiplied by the compensation and give the correction to be added algebraically to the resultant for the depth 113.7 km ．to obtain the resultant for the particular depth in question．

[^6]Factors，$\frac{R_{d}-R_{0}}{R_{0}}$ ，used in computing resultant of topography and compensation for given depths．

	Factors for depth of compensation of－					
	42.6 km ．	56.9 km ．	85.3 km ．	127.9 km ．	156.25 km ．	184.6 km．
18	－0．53	－0． 41	－0．17	＋0．06		
17.	二．56			＋	+ + +.181 .21	+0.19 + +.30
15．．．	－． 58	二． 45	＝． 21	＋．09	＋． 21	＋ 36
14．．．						
13.	－． 61	－． 47		＋． 11	＋． 30	
${ }_{11}^{12}$	＝． 62	－． 49	－． 24	＋． 12	＋．34	$+.54$
10.	二．62	二．${ }_{50}$	＝${ }^{24}$	＋． 12	＋．35	＋． 57
9.	＝．${ }^{\text {a }}$	－． 50	＝．24	＋+13	＋．36	＋． 62
8.	－． 03	－． 50	－． 25			
	－． 63	－． 50	－． 25	＋． 13	＋．38	＋．63
	－． 63	－． 50	＝．25	＋${ }^{13}$	＋．38	＋．63
4．．．．．．．	二． 63		二．25	＋． 13	＋．38	＋．63
3.						
	$=.63$	－． 50	－． 25	＋．13	＋．38	＋${ }^{+63}$
	－． 63	－． 50	－． 25	$+.13$	＋．88	＋．63

An example of the use of these tables is given below．The quantities in the second and third columns are taken from page 42 and are multiplied by the factors in the tables on page 98 and above and the products are placed in the appropriate column．The total of these products for a given depth is the correction to be applied to the effect of topography and isostatic com－ pensation for depth 113.7 km ．in order to obtain the effect for the depth in question．

In the same way the computations for other stations in the United States have been made， and the results to three decimals of dynes are shown on pages 100－102．

Corrections for change of depth，station 195，Lander，Wyo．
［These corrections ara in units of the fourth decimal place in dynes and are to be added algebraically to the effects of topography and compensation for the depth 113.7 lm ，to obtain the effects at other depths．］

The following table gives the effect of topography and compensation for each of the 219 stations in the United States for various depths.

Corrections for topography and isostatic compensation for given depths of compensation.

Corrections for topography and isostatic compensation for given depths of compensation－Continued．

Number and name of station	Depth， 42.6 km ．	Depth， 56.9 km ．	Depth， 85.3 km ．	Depth， 113.7 km	Depth， 127.9 km	Depth， 150.25 km	$\begin{gathered} \text { Depth, } \\ 184.6 \mathrm{~km} \text {. } \end{gathered}$
76．Bismarck，N．D	－0．005	－0．005	－0．006	－0．005	－0．005	－0．005	－0．004
77．Hinsdale，Mont．	－． 012	－． 014	－． 015	－． 017	－． 017	－． 018	－． 017
79．Boise，Idaho．．a	－． 0.035	－． 0348	－． 0415	－． 0.044	二． 0.042	－． 042	－． 040
80．Astoria，Oreg．	＋．001	＋．．002	$\mp .005$	＋．008	－． 008	$\ddagger .011$	－． 013
81．Sisson， Cal ．	－． 015	－．．008	＋．．004	＋． 015	＋． 020	＋． 028	＋． 038
82．Rook Springs，	－． 014	－． 011	－． 007	－．001	＋．001	＋．006	＋．013
	.000 +.008	$\mp .001$	＋．000	＋．002	$\pm .002$	＋．004	＋． 0068
85．North Hero， Vt	$\pm .007$	$\pm .008$	＋．009	$\pm .009$	$\pm .008$	$\pm .007$	＋．018
86．Lake Pl	＋． 014	＋． 019	＋． 028	＋． 032	＋． 034	＋． 039	
87．Potsda		－． 000	－．005	－． 004	－． 003	－． 001	＋．043
8．Wilson，${ }^{\text {N }}$		－． 001	－． 002	－． 002	．001		． 0000
89．Alpena，Mich	－． $\mathrm{+}$	＋．003	－．	.000 +.025	.000 +.028	＋．002	＋． 003
91．Durham，N．C．	＋． 009						
92．Fernandina，Fi	＋． 007	＋．009	＋．013	$+.017$	＋．019	＋．023	＋．022
83．Wiumer Ala	＋． 011	＋．013	＋． 016	＋． 018	＋． 019	＋．022	＋．025
9．Alicerillo，Ala	＋． 000	＋． 006	＋． 007	＋． 008	＋．009	＋． 010	＋．012
95．Now Madrid，M	＋．003	＋．002	＋．001	＋．001	＋．001	＋． 001	$+.002$
9\％．Mens， Ar	＋． 011	＋． 012	＋． 013	＋． 015	＋． 015	＋． 017	
97．Nscogdoch	＋．007		＋． 007	＋．008	＋．008		
98．Alpine，Te	＋． 013	＋．017	＋．025	＋．033	＋． 036	＋．042	＋．048
100．Guymon，Okia	$\pm .0033$	$\pm .005$	$\pm .003$	$\pm .001$	＋．013	+.016 +.002	+.021 +.005
101．Helenwood，Tenn	＋． 005						
102．Cloudland，Tenn．	＋． 102	＋． 109	＋． 121	＋． 130	＋． 134	＋．141	＋． 147
103．Hughes，Tenn	＋．028	＋．033	＋．044	＋．053	＋． 056	＋．063	＋．069
109．State College，	011	－． 012	－． 0008	－． 010	－． 009	－． 007	－． 004
10．							＋． 019
6．Fort Kant，Me	． 000		． 000	＋． 001	＋． 002	＋． 003	
107．Prantice， W	＋．003	＋．005	＋． 008	＋．010	＋．011	＋．013	＋．0015
108．Fergus Falls，	$\pm .002$	$\pm .001$	＋．002				
110．Boulder，Mont	二．022	－． 019	二．013	－． 0007	－．005	．000	－．021
111．Sky komish，Wash							
112．Olympla，Wash	－．006	＝：010	－． 012	－．012	－． 011	－． 011	＝．009
113．Heppner，Oreg	－． 005	－． 008	－． 007	－． 007	－． 006	－． 005	－． 004
1115．Truckee，Cal．	＋． 014	＋． 025	＋．003	＋． 057	＋． 064	＋．074	＋．085
115．W innemucca，	－． 008	－．009	－．007	－．004	－． 002	＋． 002	＋．008
116．Ely，Nev	－． 007	－． 001	＋． 010	＋． 020	＋． 025	$+.033$	
117．Guernsey，W	－． 015	－． 017	－． 018	－． 016	－． 015	－． 013	
118．Pierre，S．Dak	－． 009	－． 010	－． 012	－． 013	－． 013	－． 014	－． 014
${ }_{\text {120 }} 120$. Forthsburg， 10	$\pm .002$	$\pm .002$	$\pm .001$	\pm.	$\pm .002$	$\pm .002$	$\pm .004$
121．Grand Rapids，Mich	＋． 001	＋． 001	＋．002				
122．Angola，Ind	＋．000	＋．008	＋．010	＋．003	\pm	＋．014	＋．006
123．Albany，N．Y	－． 010	－． 010	－． 009	－． 0008	－． 004	－． 001	＋．002
121．Port Jorvis N ．	－． 008	－． 000	－． 003	＋．003	＋． 005	＋．009	＋． 013
125．Atlantic City， N	＋． 007	＋． 010	＋． 014	＋． 018	＋．021	＋． 024	＋．028
128．Bridgehampton，	＋．000	＋． 011					
127．Chatham	＋．010	＋．014	＋．019	＋．024	＋．027	＋．031	$+.036$
129．Lackiand， M	＋． 0008	$\pm .008$	＋．008	＋．011	＋．012	＋． 014	$\pm .017$
120．Whitehall，N．Y	－． 017	－．016	$\pm .015$	－．012	\pm－011	$\pm .008$	＋．017
181．Little Falls，N．							
132．Watertow	－． 0000	－．002	＝．001	$\mp .001$	¢．002	＋．004	＋．005
133．Southport	－． 007	－． 005	．000	＋．004	＋．006	＋． 010	
134．Erie，Pa	－． 002	－． 001	． 000	＋．001	＋．002	＋． 003	＋．005
135．Parkersburg，W	－． 010	－． 009	－． 008	－． 000	－．005	． 003	．000
139．Columbus，Ohlo	－． 002	－．．002					
173．Indianapoils，Ind	－． 001	．．000	＋． 002	＋．003	＋． 004	＋．006	＋．007
138．Spring feld，	＋．004	＋．004	＋．004	＋．005	＋．005	＋．006	＋．006
139．Joplin，Mo．．	$\pm .007$	$\pm .008$	＋．000	＋．012	＋．0012	＋．014	+.016 +.004 $+\quad .004$
141．Fort Smith，Ark							
142．Texarkana，	＋．001	$\mp .001$	－．000	＋．001	＋．001	＋．002	$\mp .002$
143．Eot Springs，	＋．006	＋．002	＋．003	＋．009	＋．005		＋．008
141．Aloxandria，		＋． 0003	＋．008	＋． 009	＋． 010	＋．012	＋． 013
145．Laural，Mm．	＋．005	＋．006	＋．009	＋．011	＋． 013	＋． 015	
146．Richmond，							
148．Emporial	＋．007	＋．009	＋．012	＋．015	＋．017	＋．020	＋ 023 +.029
149．Wilmington，N．C	\pm＋．010	＋．013	＋．015	＋．019	$\pm .028$	＋．023	＋．029
150．Cheraw，8．C．．．	＋．000	＋．007	＋．010	＋．013	＋：014	＋．017	＋． 021
181．Charlotte，N						＋． 020	
152．Asheville，	$+.004$	＋．009	＋． 018	＋．026	＋．029	＋．035	＋．041
154．Wistond	－． 0008		－． 001	＋．002	＋．003	＋． 006	．009
5．Knoxville，Tenn	$\pm .007$	＋．005	＋．009	$\pm .001$	＋．000	．008	1
							＋．00

Corrections for topography and isostatic compensation for given depthe of compensation-Continued.

Number and name of station	Depth, 42.6 km .	Depth, 56.9 km .	Depth, 85.3 km .	Depth, 113.7 km .	Depth, 127.9 km .	$\begin{gathered} \text { Depth, } \\ 156.25 \mathrm{~km} . \end{gathered}$	$\begin{gathered} \text { Depth, } \\ 184.6 \mathrm{~km} \text {. } \end{gathered}$
156. Bristol, Ve	-0.008	+0.001	+0.007	+0.012	+0.014	$+0.019$	+0.024
157. Homestead, Fila	+. 013	+.016	+.024	+.029	+.032	+.087	+.012
158. Sebrtog, Fla	+. 010	+.018	+.018	+.023	+.025	+.030	+.034
159. Titusville, P	+.009	+. 012	+.018	+.023	+.025	+.030	$+.034$
160. Leesburg, Fla	+.009	+. 012	+. 016	+.021	+.023	+.027	$+.031$
161. Cedar Keys, Fla	+. 000	+.00n	+.012	+.016	+.018	+.028	+.025
162. Macon, O8....	+.001	+.002	+.004	+.007	+.008	$\pm .010$	+.013
163. Albany, Gs	$+.004$	+005	+.008	+.011	+.012	+.015	+.018
164. Pensacola, Fir	+.005 +.007	+.007 +.009	+.010 +.013	+.014	+.015 +.018	+.018 +.021	+.020 +.084
165. Opeliks, Ala	+.007	+.009	+.013	+.017	$+.018$	$+.021$	+.084
166. Huntswllle. Als.	-. 0003	-. 002	+.001	+.003	$+.005$	+.007	+. 010
167. Arkansas Ctty,	+.003	+.003	+.004	+.005	+.005	+.006	$+.007$
168. Memphis, Tenn	$\pm .001$	+.001	+.002	+.002	+.003	+.003	$+.004$
169. Maminoth Spring	-.003	-.004	-. 0003	-. 0008	-.001	+ 000 +.008	+.001
170. Eopkinsville, Ky	+.003	$+.003$	+.005	+.003	+.007	+.008	$+.010$
171. Danville, Ky	$+.004$	+.005	$+.008$	+. 011	$+.012$	+.015	+. 017
172. Clifton Forge	-. 014	-. 013	$\cdots .007$	-.003	. 000	+.005	+.009
173. Greenville, Ala	$+.009$	+.011	+.014	+.016	+.018	+.020	+.022
174. Birmingham	+.003	+.005	+.008	+.011	+.012	+.014	+.017
175. Jexington, V	-. 004	-.003	+.001	+.005	+.007	+.012	+.016
176. Prestonsburg, Ky	-. 010	-. 009	-. 007	-. 004	-. 003	-. 001	+.002
177. Traverse City, Mich	+.001	+.001	$+.001$	+.002	+.003	+.003	$+.004$
179. Seney, Mich	+.004	+.004	+.008	+. 007	+.007	+.008	+.010
179. Oconto W is.	+.000	-. 0001	$\pm .001$	$\bigcirc .001$	-.001	. 000	$+.001$
180. Grand Rapids,	+.002	+.003	$+.004$	+.005	+.006	+.007	$+.009$
181. Winons, Minn.	-. 008	-. 008	-. 000	-. 000	-. 000	-. 005	-. 004
182. Baldwin, Wis.	+.004	+.005	+.005	+.008	+.006	+.008	$+.009$
183. Cumberland W	+.005	+.005	$+.006$	+.008	+.008	+.009	+.011
184. Cambridge, Minn	+.001	+.001	$+.002$	+.002	+.002	$+.003$	$+.004$
185. Brainem, Mlnn.	+.001	+.001	+.008	+.003	+.003	+.004	$+.005$
188. Aberdeen, 8. Dal	-. 004	-. 004	-. 005	-. 005	-. 005	-. 005	-. 0005
187. Faith, B. Dak	+.005	+.005	+.006	$+.006$	$+.008$	+.007	$+.008$
188. Marmarth, N. D	-. 005	-. 005	-. 004	-. 002	-.001	. 000	+.003
189. Towner, N. Dak	-. 003	-. 0004	-. 004	-. 004	-. 005	-. 004	-. 003
190. Crosby, N. Ds	+.001	+.001	+.001	+.001	+.001	+.001	+.002
191. Crookston, Minn	-. 004	-. 005	-. 008	-. 006	-. 007	-. 006	-. 006
192. Poplar, Mont.	-. 0008	-. 007	-. 008	\sim	-. 009	-. 009	-. 009
198. Míos City, Mont	-. 019	-. 020	-. 021	-. 020	-. 020	-. 020	-. 018
194. Huntley Mont.	-. 018	-. 020	-. 022	-. 022	-. 022	-. 022	-. 020
195. Lander, Wyo.	-. 037	-. 036	-. 033	-. 028	-. 025	-. 020	-. 018
196. Fraribault, Minn.	-. 001	-. .001	. 000	. 000	+.001	+.002	$+.003$
197. St. James, Minn.	+.001	+.001	+.002	$+.002$	+.002	+.003	$+.004$
198. Edgemont, 8. De 199. Dawsan, Minn.	-. 013 $=.003$	-.014	-. 013 $=.0013$	-. 012 -.003	-. 011	$=.009$ $=.003$	-.006
200. Cokato, Minn.	+.002	+.002	+.002	+.003	+.003	+.003	+.004
201. Wasta, B. Dak	-. 010	-. 011	-. 013	-. 013	-. 013	-. 012	-. 012
202. Moorriolt Wyo	-. 001	. 000	+. 002	+.005	+.006	+.009	$+.013$
203. Duluth, Minn	-. 011	-. 011	-. 011	-. 010	-. 010	-.009	-. 008
204. Osage, Iowa	$+.004$	+.004	+.006	+.007	$+.007$	$+.009$	$+.010$
205. Randolph, Neb	$+.005$	+.005	+.005	+.005	$+.006$	+.008	$+.007$
206. Valentine, Ne	. 000	. 000	+.002	+.004	$+.005$	+.008	+.008
207. Wheeling,	-. 009	-. 008	-. 006	-. 003	$-.002$.000	$+.003$
208. Leen, Iowa	$+.005$	$+.005$	+.006	+.007	$+.007$	+.009	$+.010$
209. Laurel, Md	$+.001$	+.002	+.005	$+.007$	+.009	+. 011	$+.014$
310. Harrisburg,	-. 004	-. 003	. 000	+.002	$+.004$	+.007	+. 010
211. Pittsburg, Pa	-. 005	-. 004	-. 002	. 000	+.002	$+.004$	$+.007$
212. Rockville, Md	$+.007$	+.008	+.011	+.013	+.015	+.017	+.020
213. Upper Marlboro, Md	+.001	+.002	+.004	+.007	+.009	+.011	+. 014
214. Fairlar, V8.	+.008	+.007	+.009	$+.011$	+.012	+.015	+.018
215. Crisfleld, Md	$+.008$	+.010	$+.014$	+. 019	$+.022$	$+.025$	$+.029$
216. Frederlcksburg, V	-. 0001	. 000	+.002	+.004	+.006	+.008	+. 011
217. Dover, Del.	+.004	+.006	+.009	+.013	+.014	+.017	$+.081$
218. North Tamarack, Mich		+. 018	+.019	+.020			
219. Eagerstown, Md	-. 002	. 000	+.002	$+.008$	+.007	+.010	$+.014$

The above table needs little comment. In general the effect of topography and compensation increases algebraically with an increase in depth. The largest change from depth of 42.6 to 184.6 km . is 0.071 dyne at station 114 (Truckee, Cal.). The next greatest change is 0.064 , at station 43 (Pikes Peak, Colo.). There are some other changes of as much as 0.030 dyne. There are a few exceptions to the general rule that the effect of topography and compensation increases algebraically with an increase of depth. At station 56 (Seattle, Wash.) the correction of -0.009 dyne for depth 42.6 km . decreases algebraically to -0.018 dyne for depth 184.6 km . There is no other similar change in the above table greater than 0.005 dyne, except for the other Seattle station, No. 53.

The greatest changes occur at stations near the coast, especially when the deep water is not far distant, and in mountainous regions. Where the topography is comparatively level for some distance around the station, the total range in the values for the various depths is small. At station 40 (Ellsworth, Kans.) it is only 0.001 dyne. At station 191 (Crookston, Minn.) the range is only 0.003 dyne. At station 144 (Alexandria, La.) the range is 0.008 dyne. The average amount of change in the effect of topography and isostatic compensation due to a change in depth from 42.6 km . to 184.6 km . is 0.014 dyne.

GRAVITY ANOMALIES FOR VARIOUS DEPTHS OF COMPENSATION FOR STATIONS IN THE UNITED STATES.

There is given below a table which contains the anomalies of gravity at the 219 stations in the United States for various depths.

Anomalies for various depthe of compensation.

	$\begin{aligned} & \text { Depth, } 42.6 \\ & \mathrm{~km} . \end{aligned}$		$\begin{aligned} & \text { Depth, } 56.9 \\ & \mathrm{~km} . \end{aligned}$		Depth, 60.0 km .	$\begin{aligned} & \text { Depth, } 85.3 \\ & \mathrm{~km} \text {. } \end{aligned}$		$\begin{gathered} \text { Depth, } 113.7 \\ \mathrm{~km} . \end{gathered}$		$\begin{gathered} \text { Depth, } 127.9 \\ \mathrm{~km} . \end{gathered}$		$\begin{gathered} \text { Depth, } 156.25 \\ \mathrm{km.} . \end{gathered}$		$\begin{gathered} \text { Depth, } 184.6 \\ \mathrm{~km} . \end{gathered}$	
	0%	$(0-12)$	0	$\left(0_{0}^{0}+11\right)$	$(90+10)$	90	$\frac{0-}{(90+9)}$	-\%	$\left(g_{\mathrm{e}}^{0-}+6\right)$	00	$\left(g_{0}^{0}+5\right)$	$0 \rightarrow 0$	$\left(g_{0}^{0}+2\right)$	$9-9$	$\left(\frac{g}{g}-1\right)$
1	+0.031	+0.019	+0.023	+0.015	+0.015	+0.019	$+0.010$	+0.013	+0.007	+0.010	+0.005	+0.005	+0.003	+0.001	
2	. 041	+.029	+.038	+.027	+.027	. 032	+.023	+.026	+.020)	+.024	$+.019$	$+.019$	+. 017	$+.014$	+ +.015
3	. 030	+.018	+.028	$+.017$	+.017	. 022	+. 013	+.018	+.012	+.015	+.010	+. 011	+.009	+.007	+. 008
4	. 017	$+.005$	+.015	$+.004$	+.004	+. 011	+.002	+.008	+.002	+.006	+.001	+. 003	+.001	. 000	+.001
5	. 003	. 009	$+.001$	-. 010	-. 010	002		005	. 011	007	-. 012	. 009	-. 011	. 012	-. 011
6	+.027	$+.015$	+.027	$+.016$	$+.017$	+.026	$+.017$	$+.024$	+.018	+. 024	$+.019$	+. 022	+.020	+. 021	
	$+.003$	-.009	+.002	$-.009$	-.008	. 000	-.009	-. 001	--.007	-. 002	-. 007	-. 004	-. 006	$-.005$	$\underline{+.004}$
$8 .$	$+.043$	+.031	+.041	+.030	+.030	+. 037	$+.028$	+.035	+.029	+.033	+.028	+.031	+.029	+.029	+.030
0	. 013	-. 025	-.012	-. 025	-.022	-. 012	-. 021	-. 012	-. 018	-. 012	-. 017	-. 013	-. 015	-. 015	-. 014
10	. 002	. 010	+.002	-. 009	. 008	001	. 008	. 000	-. 006	-. 001	. 006	+.001	-. 001	-. 003	-. 008
11	. 000	-. 012	. 000	-. 011	-. 010	-. 001	-. 010	-. 002	-. 008	- . 002	-. 007	-. 004	-. .006	- . 005	
12	. 018	. 030	-. 018	-. 028	-.028	-. 018	-. 127	-. 019	-. 025	-. 019	-. 024	-.020	-. 022	-. 021	-. 0.020
	. 036	+.024	$+.037$	$+.028$	+.027	+.038	$+.029$	+.038	+.032	+.038	$+.033$	+.037	+.035	+.038	+.037
1	. 037	+.025	+.038	+.026	+.028	+.036	+.027	$\pm .034$	+.023	+.033	$\underline{+.028}$	+.031	+.029	+. 029	+.030
	. 009	. 021	. 010	. 021	021	013	022	. 015	-. 021	-. 016	. 021	019	. 021	. 022	-. 021
$18 .$. 027	+.015	+.027	$+.016$	+.017	+.028	+.017	$+.023$	$+.017$	+. 021	+. 016	+. 019	+. 017	+. 016	
	. 033	-. 015	. 005	-. 016	-.016	009	-. 018	-. 013	-. 018	-. 015	-. 030	-. .018	$\pm .021)$	$\underline{+.021}$	-.020
	. 008	-. 004	$+.003$	-. 008	-.008	-. 005	-. 014	-. 013	-. 019	-. 017	-. 022	-. 023	-. 025	-. 028	-.027
	. 001	-. 013	-. 001	-. 012	-. 011	-. 003	-. 012	-. 005	-. 011	-. 007	-. 012	-. 010	-. 012	-. 013	-. 012
		+.026	+. 033	+.022	+.022	. 024	. 015	+. 018	+. 012	+.015	+.010	$+.010$	+.008	+.005	+. 006
21	. 049	+.037	+.048	+.037	$+.038$	+.047	+.038	+.045	+. 039	+. 044	+ . 039	+. 042		+. 039	+. 040
	. 051	+.039	+.050	+.039	$+.040$	+.049	$+.040$	+.047	+. 041	$+.045$	$+.040$	$+.043$	+.041	+. 040	+.041
23	. 002	-. 010	+.002	-. 009	-.008	. 000	-.009	-. 003	-. 009	-. 004	-. 009	-.006	-.008	-.009	-.008
	. 036	+.024	+.035	$+.024$	+.025	+.083	+.024	+.030	+. 024	+.028	+.023	+.025	$\pm .023$	+.022	+.023
	. 005	. 017	-. 006	-. 017	-. 016	. 018	-. 017	. 011	-. 017	-. 013	-. 018	. 015		-. 019	-. 018
	. 039	+.027	+.038	+.027	+.027	+.035	+.026	$+.032$	+.026	+.080	+.025	+.028	+. 026	+. 024	
	. 037	+.025	+.036	+.025	+.025	+.034	$+.025$	+.032	+.024	+.029	+.024	+.026	+.024	+.022	+.023
	. 001	-. 013	. 004	. 015	. 015	-. 007	-. 016	-. 012	-. 018	-. 014	-. 019	-. 018	-.020	-. 022	-. 022
	. 021	+.009	+. 019	+.008	+.008	+.016	+.007	+.013	+.007	+. 011	+. 006	+.008	+.006	+.004	+.005
	+.021	$+.009$	+.020	+.009	+.009	16	. 007	$+.013$	+. 007	+.011	006	008	+.00	+.004	+.005
31	. 005	. 007	+.004	-. 007	. 007	+.002	-. 007	. 000	- .006	- . 002	-. 007	-.003		-.000	
	009	. 021	$-.010$	-. 021	-.020	$-.012$	-. 021	-. 015	-. 021	-. 016	-. 021	-. 019	-. 021	-. 022	-. 021
	. 007	. 005	$+.007$	-. 004	-.003	$+.007$	-. 002	+.005	-. 001	$+.004$	-. 001	+.003	+.001	+.002	+.003
	. 010	. 022	. 083	. 021	-. 019	. 010	. 019	-. 011	-. 017	-. 012	-. 017	-. 014	-. 018	-. 016	-. 015
	. 000	. 012	. 000	. 011	-. 010	. 000	. 000	-. .001	-. 007	-. 001	-. 006	-. 002	. 04	-.003	-. 002
	. 001	-. 011	+.001	-. 010	-. 009	+.002	-. .007	+.001	-. 005	. 000		-. 001	. 003	-. .003	
	. 005	-.007	+.005	-. 0008	-. 005	+.004	-. 005	+.003	-. 003	+.002	-. 003	+.001	-. 001	-. 001	.000
	. 002	-.010	$+.003$	-. 008	-. 007	+.003	-.006	+.003	-. 003	$+.003$	-. 002	$+.002$. 000	+.002	$+.003$
	. 009	-.021	-. 008	-. 019	-. 018	-.007	-.016	-.008	-. 014	-. 008	-. 013	-. 0018	-. 010	-. 009	$\underline{-.008}$
	. 021	+.009	+.022	+.011	+.012	+.022	$+.013$	+. 022	+. 016	+.022	$+.017$	+.022	+.020	+.021	+.022
$41 .$. 003	. 009	$+.002$	-. 009	. 009	-. 001	- . 010	-. 004	-. 010	-. 005	. 010	-. 007	. 009	- . 010	-. 009
42	. 018	+.006	+.014	+.003	+.003	+.008	-. 001	+.001	-. 005	-. 002	-.007	-.008	-. 010	$-.016$	-. 015
	. 089	+.057	+.057	+.046	+.045	+.041	+.032	+.028	$+.023$	+.024	+.019	$+.015$	+.013	+.005	$+.006$
	008	. 020	$-.006$	-. 017	-. 016	-. 005	-. 014	-. 008	-. 014	$-.010$	-. 015	-. 014	-. 016	-. 019	-. 018
	. 051	+.039	+.048	$+.037$	$+.037$	+.039	$+.030$	+.028	+.022	+.023	+.018	+.014	+. 012	+.003	+.004
46	. 031	+.019	$+.034$	+.023	$\pm .024$	+.035	+.026	+.032	+.028	+.030	+.025	+. 027	+. 025	+..021	
	. 020	-.600	-. 016	-.023	-. 0288	-.013	-. 0222	-. 013	-.019	-. 013	-.018	-. 015	-. 017	$\underline{+.018}$	$\pm .017$
	. 038	+.026	+. 032	+.021	+.021	+.022	+.013	+.012	+.008	$+.009$	+.003	$+.001$	-. 001	-. .008	-.005
4.	. 021	+.0.09	+.021	+.010	+.011	+. 021	$+.012$	+.018	$+.012$	$+.017$	+.012	+. 1114	+.012	+.009	$+.010$
	35	+.028	$+.028$	+.018	+.017	+.017	+.008	$+.008$. 000	$+.001$	4	7	-. 009	. 016	-. 015
	$+.055$	+.043	+.049	+.038	$+.038$	$+.039$	$+.030$	+.029	$+.023$	$+.024$	+. 018	$+.016$	+. 014	+.008	+.009
	$+.081$	+.019	+.026	+.015	+.015	$+.017$	+.008	+.007	+.001	+.002	-. 003	-. 005	-. 007	-. 014	$\underline{.013}$
	. 093	-. 105	-. 080	-. 101	-. 100	-.086	-.095	-. 085	-. 091	-. 084	-.089	-. 084	-. 086	-. 085	-. 084
	$+.006$	-.008	$+.001$	-. 010	-. 010	-. 008	-. 017	-. 015	-. 021	-. 018	-. 023	-. 023	-. 025	-. 028	-. 027
	. 033	+.021	+. 025	+. 014	+.013	$+.013$	+..004	+.005	-. 001	+.001	-. 004	-. 005	. 00	-. 010	-. 009
	. 094	-. 108	-. 000		100	086	- .095	. 085	-". 091	085	- .080		087	. 085	-. 084
57	+.004	+.042	+.052	$+.041$	+.041	+.049	$+.040$	+.046	+.040	+ +.044	+.039	+:042	$+.040$	+.040	+.041
5	$+.035$	+.023	+.034	+.023	+.023	+.032	+.023	+.031	+. 025	+ ${ }^{\circ} .030$	+.025	+ 3.029	+.027	+.027	+.028
¢	$+.024$	+.012	. 025	+.014	+.015	+ 5.026	+.017	+.027	+. 021	+. 027	+ . 022	+ 8.027	+.025	+.027	+. 028
60.	. 007	$-.005$. 007	. 0	. 008	+..008	001	. 009	+.003	,	+.004		+. 007	+. .009	. 010

Anomalies for various depths of compensation-Continued.

Anomalies for various depths of compensation-Continued.

Number of station	Depth, 4.8		$\text { Depth, } 56.9$		Depth,	Depth, 8.3		$\begin{aligned} & \text { Depth, } 113.7 \\ & \mathrm{~km} . \end{aligned}$		Depth, 127.9km.		Depth, 156.25km.		Depth, 184.6	
	$0 \rightarrow 0$	$\left(90^{9-12)}\right.$	$9 \rightarrow 0$	$\left(00^{0-1}+1\right)$	$(90+10)$	0	$\stackrel{0-}{(0+9)}$	$g-90$	$\xrightarrow[(90+8)]{0-}$	0	$\left(\begin{array}{c} g- \\ \left(g_{\mathrm{o}}+5\right) \end{array}\right.$	$0-9$	$\xrightarrow[(90+2)]{9-}$	0	${ }_{(60-1)}$
$\begin{aligned} & 141 . \\ & 112 . \\ & 143 . \\ & 144 . \\ & \hline 15 . \end{aligned}$	$\begin{aligned} & -0.009 \\ & +.010 \\ & +.00 \\ & +.006 \\ & +.028 \end{aligned}$	$\begin{aligned} & -0.021 \\ & +.007 \\ & +.016 \\ & +.008 \\ & +.016 \end{aligned}$	$\begin{aligned} & -0.008 \\ & +.019 \\ & +.020 \\ & +.005 \\ & +.027 \end{aligned}$	$\begin{array}{r} -0.019 \\ +.0087 \\ \pm .0 .017 \\ +.016 \end{array}$	$\begin{aligned} & -0.018 \\ & +.009 \\ & +.0018 \\ & +.005 \end{aligned}$	$\begin{aligned} & -0.007 \\ & +.020 \\ & +.027 \\ & +.003 \\ & +.024 \end{aligned}$	$\begin{aligned} & -0.016 \\ & +.011 \\ & +.018 \\ & +.006 \\ & +.015 \end{aligned}$	$\begin{aligned} & -0.008 \\ & +.019 \\ & +.020 \\ & +.002 \\ & +.022 \end{aligned}$	$\begin{array}{\|} -0.014 \\ +.013 \\ \pm .020 \\ +.004 \\ +.016 \end{array}$	$\begin{aligned} & -0.008 \\ & +.019 \\ & +.025 \\ & +.001 \\ & +.020 \end{aligned}$	$\begin{aligned} & -0.018 \\ & +.014 \\ & +.020 \\ & +.004 \\ & +.015 \end{aligned}$	$\begin{aligned} & -0.009 \\ & +.018 \\ & +.024 \\ & +.0018 \end{aligned}$	$\begin{aligned} & -0.011 \\ & +.016 \\ & +.022 \\ & +.003 \\ & +.016 \end{aligned}$	$\begin{array}{r} -0.010 \\ +.018 \\ +.028 \\ +.002 \\ +. .016 \end{array}$	-0.009 +.019 $\pm .023$ +.001 +.017
150	$\begin{array}{r} +.07 \\ +.029 \\ +.001 \\ \hline+.010 \end{array}$	$\begin{aligned} & +.005 \\ & +.017 \\ & \hline \pm .011 \\ & \hline+.002 \end{aligned}$	$\begin{array}{r} +.016 \\ +.027 \\ \hline \mathbf{y} \\ \hline+.013 \\ \hline+.012 \end{array}$	$\begin{aligned} & +.005 \\ & \pm .016 \\ & +.012 \\ & +.002 \end{aligned}$	$\begin{aligned} & +.005 \\ & +.016 \\ & +.012 \\ & \hline+.002 \end{aligned}$	$\begin{aligned} & \pm .014 \\ & \pm .024 \\ & \hline .006 \\ & \hline+.018 \end{aligned}$	$\begin{aligned} & +.005 \\ & \pm .015 \\ & \pm .015 \\ & +.027 \\ & +.004 \end{aligned}$	$\begin{aligned} & \pm .011 \\ & \pm .021 \\ & -.010 \\ & +.010 \end{aligned}$	$\begin{aligned} & +.005 \\ & +.015 \\ & +.016 \\ & \hline+.009 \end{aligned}$	$\begin{aligned} & +.010 \\ & \pm .019 \\ & \hline+.012 \\ & \hline+.026 \\ & \hline \end{aligned}$	$\begin{aligned} & +.005 \\ & \pm .014 \\ & \pm .017 \\ & \hline+.031 \end{aligned}$	$\begin{aligned} & +.007 \\ & +.016 \\ & \pm .016 \\ & \hline+.0006 \end{aligned}$	$\begin{aligned} & +.000 \\ & +.014 \\ & \hline+.018 \\ & \hline+.032 \\ & \hline+.092 \end{aligned}$	$\begin{array}{r} +.004 \\ +.0013 \\ \pm .001 \\ \hline+.005 \end{array}$	$\pm+.005$ $\pm .014$ $\pm .019$.003
151 15 15 15 15	$\begin{array}{\|} +.042 \\ \pm .025 \\ \hline . .007 \\ \hline-.027 \end{array}$	$\begin{array}{r} +.030 \\ \pm .013 \\ -.019 \\ =.013 \end{array}$	$\begin{aligned} & +.040 \\ & \pm .000 \\ & \hline-.009 \\ & \hline-.002 \end{aligned}$	$\begin{aligned} & +.029 \\ & \pm .009 \\ & \pm .0029 \\ & \hline-.019 \end{aligned}$	$\begin{aligned} & +.029 \\ & +.090 \\ & +.023 \\ & -.019 \end{aligned}$	$\begin{aligned} & \pm .037 \\ & \pm .011 \\ & -.0127 \\ & -.027 \end{aligned}$	$\begin{aligned} & +.028 \\ & \pm .002 \\ & \pm .026 \\ & -.003 \\ & -.019 \end{aligned}$	+.033 +.003 .015 -.013 .013	$\begin{aligned} & +.027 \\ & -.023 \\ & -.021 \\ & -.003 \\ & \hline \end{aligned}$	$\begin{aligned} & +.0108 \\ & +.000 \\ & -.016 \\ & -.018 \end{aligned}$	$\begin{aligned} & \pm .077 \\ & \pm .005 \\ & -.001 \\ & -.037 \end{aligned}$	$\begin{array}{r}-.028 \\ +.006 \\ -.019 \\ -.017 \\ \hline\end{array}$	$\begin{aligned} & +.026 \\ & -.0081 \\ & \hline-.028 \\ & \hline-.019 \end{aligned}$	$\begin{array}{r} +.024 \\ +.012 \\ -.023 \\ -.039 \\ -.020 \end{array}$	¢ .025 $\pm .011$ $=.021$ $=.038$
$\begin{aligned} & 154 \\ & 154 \\ & 154 \end{aligned}$	$\begin{aligned} & +.007 \\ & +.012 \\ & +.0021 \\ & +.021 \end{aligned}$. 0038	+.004 +.015 +.001 +.003 +		$\begin{aligned} & \mathrm{Z} .007 \\ & \hline .020 \\ & \hline+.007 \\ & +.007 \end{aligned}$	$\begin{aligned} & -.002 \\ & -.003 \\ & \hline+.001 \\ & +.012 \end{aligned}$.011 .032 .013 .003	$\begin{array}{r} .007 \\ .008 \\ .009 \\ .007 \end{array}$	$\begin{array}{\|l\|} \hline .013 \\ \hline .034 \\ \hline .0015 \\ \hline .001 \end{array}$	-.009 $=.0011$ +.005	.014 .036 .016 .000	$\begin{array}{r} -.014 \\ \hline .0 .016 \\ \hline .000 \\ 0 \end{array}$	$\begin{array}{\|l\|} \hline-.016 \\ \hline \\ \hline \\ \hline-.0018 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-.019 \\ \hline \\ \hline-.0020 \\ \hline \end{array}$	= $\begin{aligned} & \text {. } 018 \\ & =.040 \\ & =.019 \\ & =\end{aligned}$
10		-. 015	005	16		-. 009	-. 018		019						
													. 022		+.022
$\begin{aligned} & 163 \\ & 164 \end{aligned}$	+.003	. 009	+.016	. 0105	010	. 0132	. 004	$\pm .010$	+.004	$\pm .009$	$\pm .004$	+. 006	+.004		$\pm .004$
		.09	. 000	020		013		. 017	. 023	018	- . 023	. 021	23	. 22	-. 023
$\begin{aligned} & 16 \\ & 16 \\ & 10 \end{aligned}$	$\begin{aligned} & -.009 \\ & \hline+.002 \\ & +\quad .020 \end{aligned}$	-.021	$\begin{aligned} & -.010 \\ & +\quad .020 \\ & +.022 \end{aligned}$	$\begin{aligned} & -.021 \\ & +.0131 \\ & +.012 \end{aligned}$	-. 021	-.013	- 0.022	$\begin{aligned} & 015 \\ & .004 \\ & .0221 \\ & .021 \end{aligned}$	($\begin{aligned} & =.017 \\ & +.000 \\ & +.020 \end{aligned}$		$\begin{array}{r} .011 \\ .005 \\ .020 \\ .019 \end{array}$	$\begin{array}{\|l\|} \hline-.020 \\ +.007 \\ +.0 .07 \\ +. .017 \end{array}$	-. 0022	(
	+. 017		. 017	. 008		+.015	$+.008$		+.008	013	+.008	+.012	+ . 010	+. 010	+.011
					026		027		. 027			. 225	027		
17															
173	004	004	. 002	009	. 008		010								-.008
174	017		019												-. 030
				019	. 019	012	. 021						-. 025		-. 026
	010	189	011		022	. 013	-. 022	. 016		017	. 022	. 019	021		
		. 002		. 001		+. 010	+.001					+.008			
179		000	. 012	. 001	an	. 010	$\pm .001$. 017	023				${ }^{006}$		
180		.043		. 043	042	.033		034	. 040		040	018	. 038		- . 0
	$\begin{array}{r} +.025 \\ \pm .040 \\ \hline .0388 \\ +.022 \end{array}$	$\begin{array}{r} +.013 \\ \pm .005 \\ \hline .0050 \\ \hline+.010 \end{array}$	$\begin{aligned} & +.025 \\ & +.048 \\ & -.0018 \\ & +.028 \end{aligned}$	$\begin{aligned} & \pm .014 \\ & -.052 \\ & -.049 \\ & -.029 \end{aligned}$	$\begin{aligned} & +.015 \\ & \pm .051 \\ & -.048 \\ & \hline+.028 \end{aligned}$	(+.025 .011 .089 +.021	($\begin{aligned} & +.023 \\ & \pm .042 \\ & \hline-.019 \\ & +.020 \end{aligned}$	($\begin{aligned} & \pm .023 \\ & \pm .042 \\ & \hline+.019 \\ & +.020 \end{aligned}$	$\begin{aligned} & +.018 \\ & \hline \\ & \hline \\ & \hline \\ & \hline \end{aligned} .0046$	$\begin{aligned} & \pm .022 \\ & \pm .044 \\ & -.020 \\ & \hline+.019 \end{aligned}$	$\begin{aligned} & +.020 \\ & \pm .046 \\ & \hline .042 \\ & +.022 \end{aligned}$	+.021 $\pm .045$.044 +.021 +	$\begin{array}{r}\text { + } 022 \\ \pm .002 \\ \hline .003 \\ \hline+.019\end{array}$
		. 007	+ . 019		.009										
		. 012					+. 014	. 023					.020		
18		. 033					+.036	+. 043	$\pm .037$						
810		+.027	. 020	014	+. 015	+.0025	+.031	+ . 0205	+ + . 019		+ . 036	+.025	+.038	+.039	+.040
$\begin{aligned} & 1912 . \\ & 192 . \\ & 19 . \\ & 19 . \end{aligned}$	$\begin{array}{r} +.017 \\ +.0247 \\ +.0375 \\ +.015 \\ +.036 \end{array}$	$\begin{aligned} & +.005 \\ & +.012 \\ & +.025 \\ & +.003 \\ & +.024 \end{aligned}$	$\begin{aligned} & +.018 \\ & +.025 \\ & +.0238 \\ & +.017 \\ & +.035 \end{aligned}$	$\begin{aligned} & +.007 \\ & +.014 \\ & +.027 \\ & +. .006 \\ & +.024 \end{aligned}$	+.008 +.018 +.028 +.007 + +	+ +.019 + +0.039 +.019 +.032	$\begin{aligned} & +.010 \\ & +.017 \\ & +.030 \\ & +.010 \end{aligned}$	+.019 +.078 +.038 +.0819 + +	+.013 +.02 +.032 +.013 +.021	$\begin{aligned} & +.020 \\ & +.027 \\ & +.038 \\ & +.0116 \end{aligned}$	$\begin{aligned} & +.015 \\ & +.022 \\ & +.033 \\ & +.014 \\ & +.018 \end{aligned}$	$\begin{aligned} & +.019 \\ & +.027 \\ & +.0019 \\ & +.019 \end{aligned}$	$\begin{aligned} & +.017 \\ & +.026 \\ & +.036 \\ & +.0 .017 \\ & +. .017 \end{aligned}$	+.019	+.020 +.088 +.037 +.018 +.013
$\begin{aligned} & 198 \\ & 197 \\ & 16 . \\ & 199 \\ & 200 . \end{aligned}$	$\begin{array}{\|} +.045 \\ +.015 \\ +.083 \\ +.025 \\ +.015 \end{array}$	$\begin{aligned} & +.033 \\ & +.003 \\ & +.051 \\ & +.013 \end{aligned}$	$\begin{array}{r} +.045 \\ +.015 \\ +.004 \\ +.004 \\ +.015 \end{array}$	$\begin{aligned} & +.034 \\ & +.004 \\ & +.053 \\ & +.014 \\ & +.004 \end{aligned}$	$\begin{aligned} & +.035 \\ & +.005 \\ & +.054 \\ & +.0 .05 \end{aligned}$	$\begin{aligned} & +.04 \\ & +.014 \\ & +.025 \\ & +.025 \\ & +.01 \end{aligned}$	$\begin{aligned} & +.035 \\ & +.005 \\ & +.054 \\ & +.016 \\ & +.008 \end{aligned}$	$\begin{aligned} & +.044 \\ & +.014 \\ & +.062 \\ & +.025 \\ & +.014 \end{aligned}$		$\begin{aligned} & +.043 \\ & +.014 \\ & +.061 \\ & +.025 \\ & +.014 \end{aligned}$	+.038 +.009 +.058 .+ .200 +	$\begin{aligned} & +.042 \\ & +.018 \\ & +.059 \\ & +.025 \\ & +.0110 \end{aligned}$	$\begin{array}{r} +.050 \\ +.011 \\ +.057 \\ +.023 \\ +.012 \end{array}$	+.041 +.002 +.056 +.001 +	+ + +042 +.085 +.057 +.014
$\begin{aligned} & 210 . \\ & \frac{201}{201} \\ & \hline \end{aligned}$	$1+.035$	$\begin{aligned} & +001 \\ & +.007 \\ & +.027 \end{aligned}$	$\begin{aligned} & +.038 \\ & +.033 \\ & +.059 \end{aligned}$	$\begin{aligned} & +.03 \\ & +.023 \\ & +.0018 \end{aligned}$	$\begin{array}{r} +.028 \\ +.024 \\ +.049 \\ -. .000 \end{array}$	$\begin{array}{r} +.038 \\ +.032 \\ +.059 \end{array}$	$\begin{array}{r} +.020 \\ +.023 \\ +.050 \\ +.026 \\ +.002 \end{array}$	$\begin{array}{r} +.088 \\ +.029 \\ \pm .088 \\ +.018 \end{array}$	+.082 + +0.023 + +.002 + +	$\begin{aligned} & +.038 \\ & +.088 \\ & \pm .0088 \\ & +.009 \end{aligned}$	$\begin{aligned} & +.033 \\ & +.023 \\ & +.003 \\ & \hline+.003 \\ & \hline+.003 \end{aligned}$	+.017 +.025 +.057 +.009	$\begin{array}{r} +.035 \\ +.023 \\ +.055 \\ +.022 \\ +.007 \end{array}$		+ +.038 +.022 +.057 +.0009
$\begin{aligned} & 200 \\ & 200 \\ & 20 \\ & 20 \end{aligned}$	$\begin{array}{r} \pm .030 \\ \pm .015 \\ \pm .0028 \\ \pm .015 \end{array}$	$\begin{aligned} & \pm .018 \\ & \hline .027 \\ & \hline \pm .003 \\ & \hline .023 \end{aligned}$	$\begin{aligned} & \pm .030 \\ & \pm .016 \\ & +.002 \\ & \pm .017 \end{aligned}$	$\begin{aligned} & \pm .019 \\ & \pm .009 \\ & \pm .036 \\ & -.027 \end{aligned}$	$\begin{aligned} & \pm .020 \\ & \hline .023 \\ & \pm .036 \\ & \hline .027 \end{aligned}$	$\begin{array}{r} \pm .028 \\ \pm .018 \\ \pm .001 \\ \pm .049 \end{array}$	$\begin{aligned} & \pm .019 \\ & \pm .027 \\ & \pm .035 \\ & \pm .028 \end{aligned}$	$\begin{array}{r} \pm .028 \\ -.020 \\ +.002 \\ -.021 \end{array}$	$\begin{array}{\|} \pm .000 \\ \hline .027 \\ \hline \pm .036 \\ \hline-.027 \end{array}$	$\begin{array}{r} \pm .025 \\ \pm .020 \\ \pm .000 \\ \pm .023 \end{array}$	$\begin{aligned} & \pm .020 \\ & \pm .027 \\ & \hline \pm .005 \\ & \hline-.020 \end{aligned}$	$\begin{aligned} & \pm .024 \\ & \pm .024 \\ & \hline \mathbf{0} .028 \\ & -.026 \end{aligned}$	$\begin{aligned} & \pm .022 \\ & \hline-.026 \\ & \hline \mathbf{+} .036 \\ & \hline-.028 \end{aligned}$	$\begin{array}{r} \pm .022 \\ \hline \mathbf{y} .027 \\ \hline \pm .035 \\ \hline-.029 \end{array}$	$\begin{array}{r}\text { + } \\ \pm .023 \\ \hline .002 \\ \hline .036 \\ \hline .028\end{array}$
211		. 022						015					021		
		048			. 048		$+.047$. 054	.048	+.052		. 050		. 047	+.048
				. 015				. 021		+. 019	+. 014	017		+.014	+.015
		. 022			-. 023			+.044						$\pm .0371$	+
	018	$\pm .000$	$\begin{array}{r} +.017 \\ +.005 \\ +.011 \end{array}$	$\begin{aligned} & +.006 \\ & +.006 \\ & +.000 \end{aligned}$	$\begin{array}{r} +.007 \\ +.006 \\ +.001 \end{array}$	$\begin{aligned} & +.015 \\ & +.002 \\ & +.004 \end{aligned}$	$\begin{aligned} & +.008 \\ & \hline+.007 \\ & +.015 \end{aligned}$	$\begin{aligned} & \pm .013 \\ & \pm .022 \\ & +.023 \end{aligned}$	$\begin{array}{r} +.007 \\ +.0087 \\ +.007 \end{array}$	$\pm .011$	$\pm . .008$	$\begin{aligned} \\ \pm \\ \hline .0009 \end{aligned}$	$\pm .0077$	$\pm .008$	+.007
	O33	-. 043	. 035	. 046	-.046	. 037	048	-. 041	. 047	-. 042	. 047	$1{ }^{\circ}$	047	-. 048	048

SUMMARY OF MEAN ANOMALIES FOR VARIOUS DEPTHS OF COMPENSATION AND THE VARIOUT VALUEG OF EQUATORLAL ORAVITY.

Depths of compensation.	42.6 km.		56.9 km .		60.0 km .		8 Cl km.	
Equatorial value of gravity	973050	878.042	978.030	02801	978.030	978.040	W\% \%x	978.039
Mean anomalies with regard to sign, using groups	+0.012	0.000	$+0.011$	0.000	+0.010	0. 100	+0.000	n.006
Nean anomalies without regard to sign, using croup	. 019	. 016	018	. 016			. 018	. 017
Mean anomalies with regard to sign, all stations.	+. 012	. 000	$+.011$. 000		. 000	$+.008$. 001
Mean anomalies without regard to sign, all stations..........	. 022	. 020	. 021	. 020		. 020	. 020	. 020
tions omitted)..................................	+.013	$+.001$	+. 012	$+.001$		+.001	+.009	000
Mean anomalies without regard to sign, all stations (Beattle stations omitted)	. 021	. 019	. 020	. 019		. 019	. 020	. 019
Depths of compensation	113.7 km .		127.9 km .		160.25 km .		184.6 km .	
Equatorial value of gravity	978.030	Wheso	\%REm	978.085	978. 030	978.082	\%\%6.08	908 0
Mean anomalies with regard to sign, using group	+0.006	0.000	+0.005	0.000	+0.002	0.000	-0.001	0.000
Mean anomalies without regard to sign, using groups	. 018	. 017	. 018	. 017	. 018	. 018	. 019	. 019
Mean anomalies with regard to sign, all stations.	+.005	-. 001	$+.004$	-. 001	+.001	-.001	-. 002	-. 001
Mean anomalies without regard to sigu, all stations..........	. 020	. 020	. 020	. 020	. 020	. 021	. 021	. 021
tions omitted)...	$+.008$. 000	+.005	. 000	$+.002$. 000	-. 001	100
Mean anomalies without regard to sign, all stations (Beattio stations omitted).	. 020	. 019	. 020	. 018	. 020	. 020	. 020	.03

The names, elevations, and locations of the stations are given in the table on pages 50-52. The values of $g-g_{\mathrm{o}}$ for any depth are obtained by combining the correction for topography and compensation for that depth given in the table on pages 100-102, with the correction for the elevation of the station and the theoretical value of the gravity for the latitude of the station computed by the Helmert formula of 1901, which are given on pages $50-52$. In this formula the value of the first term is 978.030 . This is the value in dynes of the intensity of gravity at the equator. In order to get the Hayford 1912 anomalies (which were computed by a formula which is the same as that of Helmert of 1901, except that the first term is 978.038), add algebraically -0.008 to the $g-g_{0}$ values. For instance, the value of $g-g_{0}$ for station 25 and the depth 42.6 km . is -0.005 . The 1912 anomaly will be -0.013 dyne.

The differenceat a station between the values of $g-g_{\mathrm{o}}$ for any two depths is of the same amount, but of opposite sign, to the difference between the effects of topography and compensation for the same depths in the table on pages 100-102.

The differences, $g-g_{\mathrm{c}}$, between the observed gravity and the computed gravity using a depth of compensation of 42.6 km . and the Helmert 1901 formula are shown in the second column of the preceding table. The mean value of $g-g_{\mathrm{o}}$ for this depth was found to be +0.012 dyne. In obtaining this mean groups of stations within limited areas were combined and each group given unit weight. The third column of the preceding table contains the anomalies for the depth 42.6 km . after the mean of the second column, +0.012 , has been applied as a correction to the first term of Helmert's formula. These are the most probable anomalies from observations in the United States if a depth of compensation of 42.6 km . and a flattening of $1 / 298.2$ are assumed. The anomalies for the other depths were obtained in a similar manner, except for the depth 60.0 km . The anomalies for this depth were obtained from the analytical solution 1 c on page 123.

The use of 94 additional stations in the United States has changed the value of the first term of the United States Const and Geodetic Survey gravity formula of 1912, based on a depth of 113.7 km ., only from 978.038 to 978.036 . The lowest value of the first term of the gravity formula as obtained in the preceding table is 978.029 for the depth of 184.6 km .

If individual stations are investigated, it will be found that those stations which are in mountainous regions and along the coast near deep water have the greatest range in the values of $g-g_{0}$ in the preceding table.

At the end of the table there is given a summary of the mean anomalies for various depths of compensation and the several values of equatorial gravity. This shows that the mean anomaly with regard to sign when stations near together are combined in groups has the same sign and is within 0.001 of the mean of all stations for each depth. It also shows that the Seattle stations at which the anomaly is -0.093 for each have little effect in deciding the character of the results. For the purpose of comparison the means with regard to sign are given below for
the formula derived from the investigation of which special publication No． 12 is a report． It has 978.038 as the first term，which is also the value of gravity at the equator．

The solution by least squares which gave from data in the United States the theoretically best value of gravity at the equator and the depth of compensation is discussed on pages 123 and 124．In the above table there are given the values of the anomalies for the depth thus determined， 60 km ．，although the depth， 56.9 km ．，gives nearly the same set of values．

The summary alone gives no strong evidence in favor of any one depth of compensation， for the means without regard to sign have little change from one depth to another while the mean with regard to sign is made the same（zero）for each depth．

The means with regard to sign of the anomalies for the different depths based upon the United States Coast and Geodetic Survey formula of 1912 are given in the following table：
Mean anomalies for various depths，based upon the United States Coast and Geodetic Survey formula of 1912， $\gamma_{0}=978.058\left(1+0.005302 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right)$ ．

Depths of compensation．	42.6 km.	56.9 km ．	60.0 km ．	85.3 km ．	113.7 km ．	127.9 km ．	156.25 km ．	184.6 km ．
Mean anomaly with regard to sign，using groups．	$+0.004$	＋0．003	＋0．002	＋0．001	－0．002	－0．003	－0．006	－0．009
Mean anomaly with regard to sign，for all stations．	＋．004	＋．003		． 000	－． 003	－． 004	－． 007	－． 010
Mean amomaly with regard to sign，omitting Seattle stations．．	＋．005	＋．004		$+.001$	－． 002	－． 003	－． 006	－． 009

This table is instructive only in showing how the computed value of gravity increases on an average with the depth of compensation．

the relation between the depth of compensation and the topography．

While the mean anomalies with and without regard to sign，as shown in the summary above and the one on page 67，do not give any intimation as to which depth is the most probable one， the tables given below do seem to throw some light on this question．

The first part of the table shows the anomalies for the coast stations for the several depths， the second part has similar data for the mountainous stations below the general level，and the third one gives the data for mountainous stations above the general level，while the fourth and fifth parts of the table give the data for the stations near but not on the coasts and in the interior not in mountainous regions，respectively．The computed value in each case from which the anomalies were obtained depends upon the theoretical value of gravity at the equator，as obtained from all of the 216 stations for the particular depth．

Aayford anomalies for various depths of compensation arranged in groups according to topography．

Station number	Hayford anomaly for depth of componsation of－						
	42.6 km ．	56.9 km ．	85.3 km ．	113.7 km ．	127.9 km.	158.25 km ．	184.6 km．
Twenty－seven coast stations in the order of their distances from the 1000 －fathom line：							
$54 .$ $18 .$	$=0.006$ $=.004$	-0.010 -.008	－0．017	－0．021	－0．023	-0.025 -.025	－0．027
80	－． 010	－． 010	－． 014	二．011	$=.0210$	$=.025$	二．027
90	－． 037	－． 039	－． 043	－．048	－． 018	－． 049	－． 0.051
82	＋．016	＋．015	＋．013	＋．012	$+.011$	＋．010	＋．010
1．	＋．019	＋．015	$+.010$	$+.007$	$+.005$	$+.003$	＋．002
$\begin{aligned} & 122 . \\ & 8 \end{aligned}$	+.016 +.031	$\begin{array}{r}+.018 \\ +.030 \\ \hline\end{array}$	＋．020	$\pm .021$	$\underline{+.023}$	$\pm .023$	$\pm .024$
－ 128.	$\pm .014$	＋．030	$\pm \pm .028$	＋．029	$\pm .028$ $\pm .021$	$\begin{array}{r}\text {＋} \\ +.029 \\ \hline .022\end{array}$	＋．030 +.023
215.	－． 022	－． 023	－． 025	－． 027	－． 022	－．029	－． 030
149.	－． 608	－． 024	－． 027	－． 028	－．．031	－． 032	
$\begin{aligned} & 166 . \\ & 127 \end{aligned}$	＝．009	$=.010$ $=.007$	$=.011$	$=.012$	－． 012	$=.012$	$=.011$
$\begin{aligned} & 127 \\ & 5 . \end{aligned}$	二．004	－． 0010	$=.010$	－． 012	－． 01014	＝．015	－． 017
	＋．005	＋．004	＋．002	＋．002	＋．001	$\pm .001$	$\mp .001$
27.	＋．06s	$+.025$	＋． 025	＋．024	$+.024$	$+.024$	
	$+.027$	＋．027	＋．028	＋．026	$+.025$	＋． 026	＋．025
	＋．048	＋．019	－．049	+.048 +.020	－．049	+.049 +.017	＋．050
161	$\pm . .015$	$\pm .027$	$\pm .023$	＋．020	$\pm .019$	＋．017	＋．015
	＋． 018	＋．017	$+.013$	＋．012	＋．010	＋．009	＋．008
29.	＋．009	$+.008$	＋．007	$+.007$	$+.006$	＋．006	$+.005$
	＋．0015	＋．009	＋．007	＋．007	$+.006$	$+.008$	$+.005$
7.	－． 01009	－． 0106	－． 018	－． 019	$=.020$	－． 0200	－． 020
159.	＋．009	＋．007	＋．003	－．001	－． .000	－． 0002	＝．004
	－． 012	$\underline{+.013}$	－． 013	$\pm .013$	－． 013	＝．012	$=.003$
Mean with regard to sigm．	－． 002	－． 003	－． 008	－． 007	－． 008	－． 009	－． 009
Mean without regard to sign	． 017	1.017	． 017	． 018	． 018	． 018	． 018

Hoyford anomalies for various depths of compensation arranged in groups according to topography-Continued.

Station number	Hayford anomaly for depth of compansation of-													
	42.6 km .	56.9 km .	85.3 km .	113.7 km .	127.9 km .	158.25 km .	184.6 km .							
Thirty-six stations in mountainous regions and below the general level arranged in the order of their distancos befow the general level:														
	+0.003	-0.001	-0.006	-0.011	-0.014	-0.017	-0.022							
156.	-. 005	-. 007	-. 011	-. 013	-. 014	-.016	-. 018							
$205 .$.	-.017	-.017	-.018	-.019 +.023	-. 0200	-.020 +.023	-. 021							
67.	+.004	$\pm .001$	$\pm .006$	$\pm .011$	$\pm .014$	+.018	$\pm .023$							
153.	-. 019	-. 020	-. 021	-. 021	-. 021	-. 021	- . 021							
210	-. 027	-. 027	-. 028	-. 127	-. 028	-. 028	-. 028							
175	-. 019	-. 019	-. 021	-. 022	-. 023	-. 025	-. 026							
	-. 027	-. 027	-. 031	-. 032	-. 034	-. 036	$-.037$							
85.	-. 005	-. 003	. 000	+.003	+.003	+.005	$+.006$							
176.	-. . 022	-. 022	-. 022	-. 022	-. 022	-. 021	-. 021							
131	-. 021	-. 021	-. 022	-. 022	-. 023	-. 024	-. 025							
155	-. 019	-. 019	-. 019	-. 019	-. 019	-. 019	-. 019							
201	+.023	+.025	+. 029	+.032	+.033		+.038							
	$+.000$	$+.000$	$+.009$	$+.009$	+.009	+.009	$+.008$							
188	$\pm .051$	+.053	$+.054$	$+.056$	$+.056$	$+.057$	$+.057$							
113	-.033	-.031	-. 028	-. 025	-. 025	-. 023	-. 021							
1112	-.038	-.038	-.037	-.037 +.035	-.037 +.035	-.037	-. 038							
110	-. 004	-.006	-.010	-. 013	-. 014	-. 016	-. 019							
111.	-. 016	-. 019	-. 023	-. 026	-. 027	-. 028	-. 029							
117	+.031	+.034	+.037	+.038	+.038	$+.039$	+.039							
115	-. 009	-. 007	-.007	-. 007	-.008	-. 009	-. 012							
109	+.032	$+.034$	$+.034$	$+.034$	$+.033$	+.032	+.031							
82.	+.022	+.020	+. 018	$+.015$	$+.014$	+.012	+.008							
45.	+.039	+.037	$+.030$	+.022	+.018	+. 012	+.004							
194	+.003	$+.006$	+. 010	+.013	$+.014$	+. 017	$+.018$							
42.	+.006	$+.003$	-. 001	-.005	-. 007	-. 010	-. 015							
195	+.024	+.024	$+.023$	$+.021$	$+.019$	$+.017$	$+.013$							
49.	$+.009$	$+.010$	+. 012	+.012	+.012	+.032	+.010							
44.	-. 020	-. 017	-. 014	-. 014	-. 015	-. 016	-. 018							
79.	-. 003	+.001	+.006	$+.010$	+.011	+.014	+.015							
78	-. 004	-. 001	+.002	$+.004$	$+.005$	$+.008$	$+.007$							
69	. 000	-. 001	$-.005$	-. 008	-. 010	-. 012	-. 017							
	+. 019	+.023	+.026	+.026	+.025	+.025	$\pm .022$							
	-. 032	-. 027	-. 022	-. 018	-. 018	-. 017	-. 017							
Mean with regard to sign. Mean without regard to s	$\begin{aligned} & .000 \\ & .018 \end{aligned}$	$\begin{array}{r} .000 \\ .018 \end{array}$	$\begin{aligned} & .000 \\ & .019 \end{aligned}$	$\begin{array}{r} -.001 \\ .020 \end{array}$	-. 0021	$\begin{array}{r} -.002 \\ .021 \end{array}$	$-.003$							
general level arranged in the order or their distances above the general level:														
129...	-. 009	-. 011	-. 014	-. 016	$\bigcirc .017$	-. 018	-.019							
71.	+.020		$+.010$	+.005	$+.002$	-. 001								
116	+.002	-.003	-. 012	-. 019	-.023	-. 028	-.083+.0040							
101	+.046	++.043+.015	$\begin{aligned} & +.043 \\ & +.008 \end{aligned}$	++.042+.001	+.041	+.041-.007								
	+.019						-. 013							
51.	$+.043$	$+.038$	+.030	+.023	+.019	$+.014$	$\pm .009$							
	+.026	+.021+.009	$+.013$	$\pm .003$	$+.003$	-.008								
152	$+.013$		+.002		$\pm .005$		-.005							
50	$+.023$	+.018+.034	+.008+.028	.000+.023	-.004+.021	-.009+.018								
	+.037						$\mp .015$							
64.	-. 036	-. 040	-. 045	-. 048	-.049	-. 050	+.052							
	+.026	+.022+.016	+.015+.011+.001	++.012+.008	+.010 +.007	+.008+.005								
86.	$+.020$						+.004							
103	-. 006	-. 012	$\begin{array}{r}+.021 \\ \hline+.057\end{array}$	+.027	+.029+.052	+.033+.051								
75.	+.067	+.062					-.036							
68.	$\begin{aligned} & +.015 \\ & +.011 \\ & +.021 \\ & +.028 \end{aligned}$	$\begin{aligned} & +.012 \\ & +.001 \\ & +.014 \\ & +.022 \\ & +.046 \end{aligned}$	$\begin{aligned} & \pm .007 \\ & +.015 \\ & +.004 \\ & +.032 \end{aligned}$	$\begin{aligned} & \pm .003 \\ & \pm .026 \\ & \pm .001 \\ & +.006 \end{aligned}$	$\begin{aligned} & \pm .001 \\ & \pm .032 \\ & +.004 \\ & +.003 \end{aligned}$	$\begin{aligned} & =.001 \\ & =.039 \\ & =.007 \\ & +.013 \end{aligned}$	$\begin{aligned} & =.006 \\ & =.047 \\ & =.009 \\ & \mp .004 \end{aligned}$							
114														
55.														
102.														
43.														
Mean with regard to sign,Mean without regard to si	$+.021$	+.016.023	+.009.019	+.003	+.001	$-.003$	-. 0006							
Forty-six stations near the coast, in the order of their distancas from the open coast:														
157.	-. 028	-. 028	$-.032$	-. 034	-. 038	-. 038	$=.040$-.005							
31.	-. 007	- . 0007	-.007	二. 0006	$=.007$	=.005								
25	-. 017						- . 018							
${ }^{93}$	-. 041	-.042	-. O	-. 042	-. 042	-. 042	-.012							
217.	-. 005			-. 008	-. 008	-. 008								
23.	- . 010	$\begin{aligned} & =.009 \\ & =.015 \\ & \pm .008 \\ & \pm .024 \end{aligned}$	$\begin{aligned} & =.009 \\ & =.016 \\ & \pm .010 \\ & \pm .029 \end{aligned}$	$\begin{aligned} & =.009 \\ & =.018 \\ & \pm .012 \\ & \pm .031 \end{aligned}$	$\begin{array}{r} =.009 \\ =.019 \\ \pm .013 \\ =.032 \end{array}$	$\begin{array}{r} =.008 \\ =.020 \\ \pm .014 \\ \pm .033 \end{array}$	$\begin{aligned} & =.008 \\ & =.021 \\ & \pm .015 \\ & \pm .034 \end{aligned}$							
28.	-. 013													
100	-. 0008													
24.	+.024													
12.	-. 028													

Hayford anomalies for various depths of compensation arranged in groups according to topography-Continued.

	Hayford anomaly for depth of compansation of-						
	42.6 km .	56.9 lm.	85.3 km .	113.7 km .	127.9 km .	156.25 km .	184.6 km .
Forty-six stations near the coast, in the order of their distances from the open coast-Continued.							
158.	-0.008	-0.010	-0.013	-0.015	-0.016	-0.018	
148	-. 011	-. 0.012	-. 01015	-0.016	-0.016	-0.018	-. 010
81.	+. 016	+.010	. 000	-. 008	-. 012	-. 018	-. 024
147	+.017	+.016	+.015	+. 015	+.014	+.014	+.024
150	$+.005$	$+.005$	$+.004$	$+.004$	+.004	+. 004	+.003
146.	$+.005$	+.005	+.005	+.005	$+.005$	$+.005$	$+.005$
173	+.015	+. 015	+. 015	+.015	+. 014	+.015	+.015
173	-.003	-. 009	-. 010	-.009	-. 010	-.009	-. 008
21.	+.037	+.036 +.037	+.038	+.039	+.035 +.039	+.036 +.040	+.036 +.040
22.	+. 039	+. 039	+. 040	+. 041	$+.040$	$+.041$	+. 041
115	+.005	+.005	+. 004	+.004	+.004	+.004	+.004
$\begin{aligned} & 145 \\ & 84 . \end{aligned}$	+.016	+.016	+.015 +.038	$+.016$	+.015	+.016	$+.017$
216	+. 006	+.008	+.038 +.006	+.039 +.007	+.039 +.008	+.040 +.007	+.040 +.007
14.	-. 006	-. 006	-. 006	-. 004	$-.004$	-. 003	-. 001
212	+.048	+.048	+.047	+.048	+.047		+.048
$214 .$	+.037	+.037	$+.037$	+.038	+.008	+.038	+.038
	$\pm \begin{array}{r}+.037 \\ \hline .025\end{array}$	+.088	+ +.038 -.021	+.038	+.037	$\pm \pm .037$	$\pm .037$
65.	$+.003$	$+.005$	+.008	+.011	+.012	+.014	+. 016
97.	-. 015	-. 014	-. 012	-. 010	$\pm .009$	-. 007	-. 005
123.	-.043 +.015	-. 042	-. 011	-.041	-. 012	-. 042	-. 042
10.	+.010	$\pm .009$	+.017	$\pm .017$	$\pm .016$	$\pm .017$	+.017 -.002
11.	-. 012	-. 011	- . 010	-. 008	-. 007	-. 006	
19.	-. 013	-. 012	-. .012	-. 011	-.012	-. 012	$=.012$
151.	+.030	$\pm .089$	$+.028$	+.027	+. 027	+.028	+.025
162.	+.025	-.046	-.046	-.047	$\pm .047$	-. 047	-. 048
165.	- 019						
	-. 081	-. 0221	$=.022$	- -.023	-.023	-. 023	-. 023
9.	-. 019	-. 018	-. 017	-. 015	$=.015$	-. 0013	$=.021$
62.	+.037	+. 035	+. 033	+.033	$\pm . .032$	+.032	-. 032
10.	-. 016	-. 015	-. 013	-. 011	-.011	-.009	$\pm .008$
6.	$+.016$	+. 016	+. 017	+. 018	+. 019	+. 020	+.023
Mean with regard to sign... Mean without regard to sign	+ . 002	+.002	+.001	+.001	$+.001$	+..001	+.001
Eighty-seven stations in the interior and not in mountainous replions, arranged in the order of elevation:							
	-. 014	-. 013	-. 012	-. 010	-. 009	-. 007	-. 005
	-. 005	-. 003	. 0000	+.003	+.004	+. 007	$\pm .009$
	+.010	$\pm .011$	+.012	+.015	+.015	+. 018	+.020
13.	+.024	+.014	-. 011	-. 0032	-.008	-.005 +.035	+.003
142.	+.007						
87.	+.020	+.020	+.011	+.013 +.023	+.014 +.023	+.018 +.024	+.019
141	$\pm .021$	+.019	$\pm .016$	-. 014	$\pm .013$	$\pm .024$	$\pm .025$
132	-. .028	-. .025	$=.024$	$\sim .023$	-. 023	-. 0222	$=.020$
35.	-. 012	-. 011	-.009	-. 007	. 006	. 004	-. 002
38.	-. 010	-. 008	-. 006	-. 003	-. 002	. 000	
169.	+.011	+.012	+.013	+.015	+.002	+. 017	+.003
120.	+.010	+.009	+. 0009	-. 008	-.008	-. 003	-.001
	$\pm .005$	\pm	+ +.006 -.019	+.008	+.008	$\pm .010$.016	$\pm .011$
	-. 029	-. 030	-. 031	-. 031	-. 031	-. 030	-. 030
179.	$=.002$	$=.001$	+.001	+.003	$+.003$	$+.008$	+.008
36.	-.011	=.010	-.007	$=.005$	-.022	=.020	-. 018
138	-. 019	-. 018	-. 016	-. 014	-. 013	-. 011	-. 008
104.	-. 027			-. 022	-. 022		
135.	-. 0.024	-. 024	-. 023	-.022	$=.022$	-. .021	$=.021$
$\begin{aligned} & 143 . \\ & 134 . \end{aligned}$	+.016	+.017	+.018	+.020	+.020	+.022	+.023
$\begin{aligned} & 164 . \\ & 168 . \end{aligned}$	$=.028$	$=.028$	-. 027	-. 025	-. 025	-. 023	-. 022
	-. 021	-. 021	-. 022	-. 021	-. 022	-. 021	-. 021
181.	+.013	+.014	+. 016	+.017			
14.	-. 027	-.027	-.027	-. 027	$-.027$	-. 026	$\pm .026$
33.	$\pm .025$	+.026	+.027	+.008	$\pm .028$	+.029	+.030
DEV:	+.047	+.048	+.050			$\pm .001$	$+.003$
178.	+. 001	+. 001	+.001	+.003	+.003	$+.004$	$+.006$
73.	a +.000 +.002	$\pm .001$	+.001	+.003	$+.004$	$+.006$	$+.007$
121.	+.013	$\pm .012$	$\pm .004$	$\pm .0070$	$\pm .007$	+.009	$\pm .011$
21	-. 022	-. 022	-. 022	-. 021	-. 022		-.021

Hayfond anomalies for various depths of compensation arranged in groups according to topography-Continued.

Station number	Haytord enomaly for depth of compensation of-						
	42.6 km .	58.9 lm .	85.3 km .	118.7 km .	127.9 km.	158.25 km .	188.6 km .
Eighty-seven stations in the interior and not in mountainous regions arranged in the order of elevation-Contd.							
	0.000	+0.001	+0.002	+0.004	+0.004	$+0.008$	+0.008
12.	-.030	-. 029	$-.027$	$-.025$	$\pm .024$	-. 022	-.020
	+.012	$+.014$	$+.017$	+.021	$+.022$	+.025	+.028
34.	-. 022	$\pm .020$	-. 019	$\bigcirc .017$	$\pm .017$	$\div .016$	$\pm .015$
74.	$+.054$	$+.056$	+.058	$+.081$	$+.062$	+.065	$+.087$
191.	+.005	+.007	+.010	+. 013	$+.015$	+. 017	$+.020$
133.	-. 023	-.024	-. 027	-. 028	-. 029	-. 030	-.031
37.	-.007	-. 006	-. 005	-. 003	-. 003	-. 001	. 000
88.	-. 0221	=. 018	-. 016	$=.014$	-. 013	-. 010	-. 008
154.	-. 033	-. 034	-. 036	-. 036	-. 037	-. 038	-. 038
171.	-. 028	-. 028	-. 027	$\cdots .087$	-. 027	-. 027	-. 028
196.	+.033	$+.084$	$+.035$	+.038	$+.038$	+.040	$+.042$
140	+. 015	+.015	+.016	+. 018	+. 019	+.020	+.022
184	-. 030	-. 029	-. 028	-. 025	-. 024	-. 022	-.020
180.	-. 043	-. 043	-. 042	-. 040	-. 040	-. 038	-. 087
122.	+.010	+. 011	+.011	+. 013	+.013	$+.014$	$+.016$
200.	$+.008$	+.004	+.006	$+.008$	$+.009$	+.012	+.014
199.	$\pm .013$	$\pm .014$	+.016	+.019	$\pm .020$	$+.023$	$\pm .025$
15.	-.021	+.021	-.022	+.021	-.021	-. 021	$\pm . .021$
119.	+. 011	+. 012	+. 015	+.017	+. 018	$+.081$	$+.022$
182.	-. 052	-.052	-. 050	-. 048	-. 047	-.046	-. 014
208.	-. 010	-. 009	-. 008	-. 006	-. 005	-. 004	-. 002
204.	-. 027	-. 026	-. 028	-. 024	-. 023	-. 022	-. 020
108.	-. 011	-. 009	$-.007$	-.008	-. 003	. 000	$+.002$
185.	+.010	$+.011$	+. 012	$+.014$	+. 015	+.017	$+.019$
96.	-. 052	-. 052	-. 051	-. 050	-. 049	-.048	-.016
218 a	- 050						
189.	-.050	-. $\mathrm{+} .012$	-. 048	+.017	-. 01014	+. $\mathrm{+}$. 015	-.013
188.	$+.007$	$+.008$	$+.011$	$+.014$	$+.015$	+. 018	+.021
60	$-.005$	$-.004$	-.001	+.003	+.004	+.007	+.010
68.	+.023	+.023	+.023	+.025	+.025	+.027	
189.	+.027	$+.029$	+.031	$+.034$	+.036	+.038	+.040
118.	$+.006$	$+.008$	$+.012$	$+.016$	$+.017$	$+.021$	$+.024$
57.	$+.042$	+.041	$+.040$	+.040	$+.039$	$+.040$	$+.041$
40	+.009	$+.011$	+.013	+.016	+.017	+.020	+.002
107.	+.027	$+.026$	+.025	+.026	+.026	+.027	+.028
205	-. 002	-. 001	+.001	+.004	$+.004$	+.007	$+.000$
	-. 002	-. 001	+.002	+.004	$+.005$	$+.008$	$+.010$
190	+. 013	$+.014$	+. 016	+.019	$+.020$	$+.023$	
192.	+.012	+.014	$+.017$	+.021	$+.022$	$+.025$	$+.028$
61.	-. 027	-. 028	-. 028	-. 027	-. 027	$-.027$	-. 023
	$+.020$	+.023	$+.028$	+.031	$+.032$	$+.036$	$+.038$
	+.032	$+.033$	+.033	+.034	+.034	+.035	+.036
193.	+. 025	$+.027$	$+.030$	+.032	$+.033$	$+.036$	$+.037$
208.	+.018	+. 019	+. 019	$+.020$	$+.020$	+.022	+.023
187	+. 012	$+.013$	+.014	$+.017$	+.018	$+.020$	$+.022$
188	+.034	+.035	+.036	+.037	+.037	+.039	+.039
	-. 008	-. 008	-. 005	-. 004	-. 003	$-.002$	-.001
100.	-. 019	-. 017	-. 016	-. 015	-. 015	-. 014	-. 014
41.	-. 009	-. 009	-. 010	-. 010	-. 010	-. 009	-. 009
	-. 012	-. 013	-. 014	-. 014	-. 015	-. 015	-. 017
Mean with regard to sign.... Mean without regard to sign.	$-.003$	$\begin{array}{r} -.002 \\ .019 \end{array}$	$\begin{array}{r} -.001 \\ .019 \end{array}$	$+. .001$	$+.001$	+.003 .020	+.005

a Not computed.
The mean value of the anomalies with regard to sign for the extreme depths for the coast stations is -0.002 for a depth of 42.6 km ., and -0.009 for the depth of 184.6 km . The intermediate depths have values which fall between those two. This is an indication that at the coast the smallest depth is nearest the truth. These stations show a negative mean value for each depth which agrees with what are called the Hayford 1912 anomalies. (See p. 63.) This is as might be expected on account of the lighter material in the Cenozoic formation which is generally present along the const. (See p. 76.)

The second table shows mean anomalies with regard to sign which are very close to zero. These are at stations in mountainous regions below the general level. The total range is only 0.003 . There is no one depth which seems to be much more probable than any other.

The third table shows that the means with regard to sign for the anomalies at mountain stations above the general level have a total range of 0.027 . They vary from +0.021 for depth

Special'Publicationo. 40.

FIG. 5.-GRAPHIC DETERMINATION OF THE MOST PROBABLE DEPTH OF COMPENSATION FROM 216 STATIONS IN THE UNITED STATES.

Special Publication No. 40.

FIG. 6.-GRAPHIC DETERMINATION OF THE MOST PROBABLE DEPTH OF COMPENSATION FROM UNITED STATES STATIONS EAST OF THE NINETY-EIGHTH MERIDIAN.

Special Publication No. 40.

FIG. 7.-GRAPHIC DETERMINATION OF THE MOST PROBABLE DEPTH OF COMPENSATION FROM UNITED STATES
STATIONS WEST OF THE NINETY-EIGHTH MERIDIAN.
42.6 km . to -0.006 for depth 184.6 km . The evidence here is strongly in favor of the greater depths.

The stations near but not on the coast have means which are close to zero for each depth. The range is from +0.002 for the depth 42.6 km . to +0.001 for the depth 184.6 km .

The stations in the interior not in mountainous regions have mean anomalies which range from -0.003 for the depth 42.6 km . to +0.005 for the depth 184.6 km . The intermediate depths have means which in no case are more than 0.003 from zero. The evidence from these stations is slightly in favor of the intermediate depths.

It is highly improbable that there should be two depths in mountainous regions, one for the higher land and one for the valleys, although it is possible that there may be a different depth in the mountainous regions than in the flat portions of the country.

We must conclude, therefore, that a depth of 42.6 or 56.9 km . is very improbable in the mountainous regions, for the mean values with regard to sign for the stations above the general level are +0.021 and +0.016 for those two depths, respectively, while for the stations below the general level the means are 0.000 and 0.000 . There seems to be no evident explanation for this difference, aside from the effect of the depth, as the stations in any one of the topographic groups do not fall largely in any one geologic formation, as do the coast stations.

The depth 184.6 km . gives mean values of -0.006 for the high stations and -0.003 for the low ones. While these values agree quite closely, yet they differ an appreciable amount from the means of all of the 219 anomalies in the whole country.

The depth which seems to give the smallest mean values for the two groups is 127.9 km . The mean for the high stations in mountainous regions for this depth is +0.001 and for low stations it is -0.001 .

The data given in the table on pages 107 to 110 , which show the relation between the anomalies and the topography indicate that the depths 42.6 and 184.6 km . are not so near the truth as are intermediate values. They also seem to indicate that the value is probably over 100 km . It is realized by the author that this conclusion is contrary to that arrived at from the determination of the most probable depth from the 216 stations by the method of least squares (see p. 123), which is 60 km . when the flattening, $1 / 298.2$, is held fixed, or 70.9 km . when the flattening also is determined by the solution. It is believed that the portion of the anomalies at coast stations due to the presence of the Cenozoic geologic formation with densities less than normal had a considerable part in making the depth from all the 216 stations as low as 60 km .

GRaphic determination of the most probable depth of compensation.
According to the theory of probabilities the most probable depth of compensation is that one for which the sum of the squares of the residuals or anomalies is a minimum. The residuals are of course assumed to be due only to accidental errors, and hence are as apt to be positive as negative. The values in the table on pages 103-105, in the columns headed $g-\left(g_{\mathrm{o}}+12\right), g-\left(g_{\mathrm{o}}+11\right)$, etc., were used in obtaining the sum of the squares of the anomalies for each of the depths.

The sum of the squares is smaller for the smallest two depths of compensation than for the other depths given in the table. The equation of the curve which most nearly fits the sums of the squares for the different depths was derived and its minimum point comes at the depth of 57.1 km .

The sums of the squares for the several depths were also plotted on figure 5 , and a curve was drawn through the several points. The lowest point on the curve falls between the depths 42.6 km . and 56.9 km ., and the value of the depth at the lowest point is 55.5 km ., with an uncertainty from plotting and scaling of about 4 km . This value is only 1.6 km . from the minimum point of the curve as found above from ite equation.

A depth for the eastern half of the United States (east of the ninety-eighth meridian) was determined by plotting the sum of the squares on figure 6. The lowest point of the curve falls at a depth of 62 km . The uncertainty of the plotting and scaling is not more than about 4 km .

Likewise a depth was determined for the western half of the United States, as shown in figure 7. Here the minimum point on the curve falls at the depth 48 km ., with an uncertainty from plotting and scaling of about 4 km .

An analysis of the table giving the anomalies for the different topographic groups (see pp. 107 to 110) makes it apparent that the results at those stations near but not on the coast and at those in the interior which are not in mountainous regions above the gencral level, are not more strongly in favor of one depth than any other. This fact causes the influence of the mountain stations above the general level to be less than the plains stations in a determination of the most probable depth of compensation where all stations are involved. This is due to the fact that there are only 20 stations in mountainous regions above the general level, while there are 169 stations in the groups mentioned above.

As the mountain stations are more sensitive to a change in the depth of compensation, it was decided to determine graphically the most probable depth from those stations alone, 56 in number. The resulting curve for these stations is shown in figure 8. The plotted points are the sum of the squares of the residuals or anomalies. These are based on a value of gravity at the equator so derived from all stations in the United States as to make the mean anomaly for the United States zero. The depth determined from this curve is 104 km . which differs materially from the depths obtained from the other three ourves (figs. 5,6 and 7) which were between 48 and 62 km .

An analytical solution of the problem was also made. In this solution the mean flattening was held fixed as in the graphical determination, but the gravity at the equator was determined from the 56 stations themselves instead of from all the stations in the United States. The depth determined was 94.9 km ., only 9 km . from the value obtained graphically in spite of the difference in methods and assumptions.

It is interesting that the depths obtained by Hayford from deflections of the vertical in several groups (Nos. 14, 8, 7, and 4) of stations in mountainous regions are 84, 66, 152, and 85 km . The value is 97 if a straight mean for the 4 groups is taken. This agrees well with the values determined analytically from gravity data for mountainous regions, which for the 56 stations is 94.9 km .

The sums of the squares of the anomalies, for the several depths, for the 20 stations in mountainous regions above the general level were plotted on figure 9 and the minimum point of the curve drawn through the plotted points gives the most probable depth as 124 km . This value is only 20 km . different from the most probable depth obtained graphically from the data for all mountain stations.

The values from the analytical determinations of the most probable depths of compensation from all of the stations in the United States, in the eastern half of this country, in the western half, and in the mountainous regions agree well with those from the graphic solutions discussed above. See pages 113 to 131 for the analytical determination of the depth of compensation, the flattening of the earth, and the theoretical value of gravity at the equator.

The stations not in the United States were not used to obtain the most probable depth of compensation, as the necessary data for them were not available.

The author is inclined to favor the depth of 94.9 km . as being nearer the truth than the lower depths, and besides it agrees more nearly with the depth as obtained from deflections of the vertical by Hayford. ${ }^{\text {a }}$ We may conclude that the most probable depth of the compensation as derived from the gravity data is 94.9 km .

It is believed that the value, 97 km ., obtained by Hayford from deflections of the vertical in mountainous regions is nearer the truth for the average depth of compensation than his values 113.7 and 120 km . If the depth from gravity data and the depth 97 km . mentioned above are given equal weight the mean depth of compensation is 96 km . which the author believes is the best one available from all geodetic data.

This value, of course, must not be considered as having extreme accuracy, for no doubt a depth determined from much more gravity and deflection data would be different. The author believes that future determinations of the depth from more extensive data will fall between 80 and 130 km .

[^7]

FIG. B.-GRAPHIC DETERMINATION OF THE MOST PROBABLE DEPTH OF COMPENSATION FROM 56 UNITED STATES STATIONS IN MOUNTAINOUS REGIONS.

Special Publication No. 40.

FIG.9.-GRAPHIC DETERMINATION OF THE MOST PROBABLE DEPTH OF COMPENSATION FROM 20 UNITED STATES
STATIONS IN MOUNTAINOUS REGIONS AND ABOVE THE GENERAL LEVEL.

CONSTANTS FOR THE GRAVITY FORMULAS AND THE MOST PROBABLE DEPTHS OF COMPENSATION DERIVED BY ANALYTICAL METHODS FROM GRAVITY DATA.

The method of computing the factors by which the effect of topography and compensation was obtained for various depths of compensation, together with the computed effects of these changes of depth and the anomalies for the several depths are given on pages $97-106$. The following analytical solution was made to determine the constants for the gravity formulas and to determine the most probable depths of compensation.

The formula for γ_{0}, the theoretical gravity at sea level in geographic latitude φ, may be written in the form

$$
\begin{equation*}
\gamma_{0}=\gamma_{t}\left(1+B \sin ^{2} \phi-1 B_{4} \sin ^{2} 2 \phi\right) \tag{1}
\end{equation*}
$$

γ, is the gravity at the equator at sea level, B and B_{4} are coefficients, the former determined from gravity observations, the latter found theoretically by Darwin and Wiechert from the assumption that the internal strata of the earth have the same form as if they were completely fluid. Their results, based on different laws of internal density, agree in giving $\frac{1}{4} B_{4}=0.000007$, which will be used throughout the publication.

Hglmert's determination of the constants gives for his formula of 1901 on the Potsdam system

$$
\begin{equation*}
\gamma_{0}=978.030\left(1+0.005302 \sin ^{2} \varphi-0.000007 \sin ^{2} 2 \varphi\right) \tag{2}
\end{equation*}
$$

If a value be assumed for the equatorial radius of the earth, the ellipticity or flattening of the earth, denoted by f, may be found from the formula,

$$
\begin{equation*}
f=\frac{5}{2} m-B-\left(\frac{10}{3} m^{2}-\frac{17}{14} m B-\frac{B^{2}}{21}-\frac{2}{21} B_{4}\right) \tag{3}
\end{equation*}
$$

In this formula B and B_{6} are the same quantities as in formula (1) and m is the ratio of the centrifugal force of the earth's rotation at the equator to gravity at the equator, or $m=\frac{\omega^{2} A}{\gamma_{e}}$. ω is the angular velocity in radians, expressed in the time unit used in $\gamma_{0} . ~ A$ is the equatorial radius of the earth expressed in the linear unit used in γ_{0}. The simple formula $f=\frac{5}{2} m-B$ is known as Clairaut's equation. The above formula is derived from Helmert (Höhere Geodäsie, Vol. II, p. 83), and may be termed Clairaut's formula, extended to terms of the second order. The value of $f=\frac{1}{298.3}$ was originally given by Helmert as derived from his formula of 1901. This is based on Bessel's equatorial radius of the earth. A larger value of this quantity such as best represents modern observations gives $f=\frac{1}{298.2}$. The value of A used in deriving the values from the gravity observations treated in this work is 6378388 meters, from Hayford's "Supplementary Investigation in 1909 of the Figure of the Earth and Isostasy," page 60.

Equation (1) may be transformed into a shape somewhat more convenient for the purpose in hand, namely,

$$
\begin{equation*}
\gamma_{0}=G-b \cos 2 \phi+d \cos ^{2} 2 \phi \tag{4a}
\end{equation*}
$$

The significance of the constants of the new form and the relations between them and those of the old are,

$$
G=\text { gravity at latitude } 45^{\circ}=\gamma_{\cdot}\left(1+\frac{B}{2}-\frac{B_{4}}{4}\right)
$$

$2 b=$ polar gravity minus equatorial gravity $=\gamma_{0} B$

$d={ }_{k} \gamma_{6} B_{4}$, which to the degree of accuracy involved in the theoretical developments for B_{6} may, like B_{4}, be considered as constant.

$$
\begin{array}{ll}
\text { Also } & \gamma_{0}=G-b+d \\
\text { And } & B=\frac{2 b}{G-b+d}
\end{array}
$$

Let the subscript zero affixed to G, B, and b denote those numerical values corresponding to Helmert's formula of 1901, also $G=G_{0}+x$ and $b=b_{0}+y$ signify the values determined from the observations; x is the correction to gravity at latitude $45^{\circ}, y$ is half the correction to the quantity, polar gravity minus equatorial gravity.

Then,

$$
G_{0}=980.61591 \text { dynes and } b_{0}=2.59276 \text { dynes }
$$

With these Helmert values, equation (4) becomes

$$
\begin{equation*}
\gamma_{0}=980.61591-2.59276 \cos 2 \phi+0.00685 \cos ^{2} 2 \phi \tag{5}
\end{equation*}
$$

or with the corrections applied

$$
\begin{equation*}
\boldsymbol{\gamma}_{\mathrm{o}}=980.61591+x-(2.59276+y) \cos 2 \phi+0.00685 \cos ^{2} 2 \phi \tag{6a}
\end{equation*}
$$

Let g be the observed value of gravity and $g_{c}{ }^{\prime}$ the value of gravity computed from (2) or its equivalent (5), including corrections for elevation, topography, and compensation for a fixed depth.

Let $n^{\prime}=g-g_{c}{ }^{\prime}$ the gravity anomaly corresponding to formula (2) or (5). The value of gravity computed from the corrected formula is $g_{e}{ }^{\prime}+x-y \cos 2 \phi$

An observation of the general form is
Observed value minus computed value $=$ residual (v)
whence
or

$$
\left.\begin{array}{c}
g-\left(g_{c}^{\prime}+x-y \cos 2 \phi\right)=v \tag{6b}\\
x-y \cos 2 \phi-n^{\prime}=-v
\end{array}\right\}
$$

This is the form of an observation equation for a particular gravity station if the depth of compensation be considered fixed.

If the assumed depth (t) be considered subject to a correction (z), then n^{\prime} depends on z. To put the equation in linear form, let c be the rate of change with ragard to depth of the total correction for topography and compensation of the station in question or $c=\frac{\partial q_{c}}{\partial t}$ since it is only through this correction for topography and compensation that g_{c} is affected by a change in t. Then if g_{c} be the computed gravity at a depth $t+z$ sufficiently near to the assumed depth t

$$
g_{c}=g_{c}{ }_{c}+c z
$$

and replacing $g_{c}{ }^{\prime}$ in (6b) by this value of g_{c} there results

$$
\begin{equation*}
x-y \cos 2 \phi+c z-n^{\prime}=-v \tag{7}
\end{equation*}
$$

which is the form of observation equation when a corrected depth of compensation is to be determined.

These observation equations are shown in the following table. Further explanations follow immediately after the table.

Observation equations for obtaining corrections to the coefficients of the gravity formula and to the depth of compensation.

Observation equations for obtaining corrections to the coefficients of the gravity formula and to the depth of com pensation－Con．

Station number	$\begin{aligned} & \text { Double } \\ & \text { inifter } \\ & 2 \phi \end{aligned}$		Comflicient of－			Constant term for solution number－							
			I	y	z	1	2	3	4	6	6	7	
${ }_{87} 8$.	${ }_{0}^{60}$	02.6 24.5	+1 +1	－0．499	＋0．39	－4．6	－8．9	－5．2		－4．6		－8．9	－8．9
10.	${ }_{60}$	33.0	＋1	二． 492	＋．iii	－．．．2	－． 0	＋．${ }^{3}$	－0．0．		0.0		
111	${ }_{60}^{60}$	34.4 39.0	+1 +1	－． 491	＋． 11		＋． 2	＋． 8			＋． 2		＋． 2
98.	60	43.0	＋1	－ .489	＋． 88	－4．8	－2．	6.2		4.5		－2．9	－2．9
89 In	${ }_{00}$	48.4 49.0	+1 +1	二． 4888	＋． 31	－． 1	＋． 6	－． 8					
75 In		${ }_{55.2}$	$+1$	二． 8888	＋． 31	－． 1	＋． 6	－． 8	－． 1		＋ 6		$\pm .6$
71 In		19.6		－． 488									－1．9
${ }_{83} 9$	${ }_{61}^{61}$	$\begin{aligned} & 20.4 \\ & 38.4 \end{aligned}$	+1 +1	－． 8878	$+.41$	$\begin{array}{r} -2.6 \\ +3.1 \end{array}$	$\begin{gathered} -1.8 \\ +3.6 \end{gathered}$	$\begin{array}{r} -3.6 \\ +1.8 \end{array}$	$\begin{aligned} & -2.6 \\ & +8.1 \end{aligned}$		-1.8 +3.6		－1．8
W．	62	42.6	＋1	－． 458	＋．67	＋2．9	＋4．2	＋． 4		＋2．9		＋4．2	． 2
${ }_{183}^{68}$	${ }_{83}^{63}$	${ }^{03.2}$	＋1	二． 453		－1．6	－1．0	－2．i	－1．6		－1．0		1
97	${ }_{63}$	12.4	＋1	－． 451	＋．03	＋．8		－ 4	＋．8		＋ 4		-1.0
${ }_{63} 14$	63 68	${ }_{32.6}^{23.0}$	+1 +1	$=.448$ $=.488$	＋．30	-2.7 -2.0	-2.2	${ }^{-3.3}$	－2．7	－2．0	－2．2		． 2
	${ }_{63}^{63}$		$+1$	二．446	＋．19	－2．0	$+1.8$	－1．3	－． 2	－2．0	＋ 3	1.5	1．8
	64	56.0	＋1	－． 424	＋． 12	－2．7	－2．4		－2．7		－2．4		
65	65	26.6	＋1	－． 416	$\pm .13$	-1.6	${ }_{-1.7}$	\pm		1.6		－1．7	± 1.7
	65	84.4	＋1	－． 414	＋．38	$+.5$	＋1．3	－． 3	＋． 5		＋1．8		＋1．8
$162{ }^{\circ}$	65	39.6	＋1	－． 112	＋．25	－3．2	－2．7	－3． 4	－3．2		－2．7		－2．7
94	66	15.2	＋1	－． 403	＋． 08	＋ 7	$+.9$	＋ 1	＋ 7		$+.9$		＋．9
112	${ }_{6}^{66}$	${ }^{51.0}$		＝ 3933	－． 31	－1．9	－1．9	－2．0					
167	67	13.0	$+1$	－． 387	＋．07	＋ 2		－． 1	＋． 2		$+{ }^{+}$		＋2．
	67	${ }_{30.0}^{30.0}$	＋1	－．383	＋． 24	± 1.0	± 1.5	± 1	± 1.0		± 1.5		1.5
	67	46.8	$+1$	－ 8.878	＋． 19	＋3．8	＋4．2	＋4．2		＋3．8		＋4．2	
		49.6	＋1	－． 377	＋．13	－2．7	－2．3	-3.5	－2．7		2.3		－2．3
149	68	28.4	＋1	－． 367	＋． 55	＋1．3	＋2．3	． 0	＋1．3		＋2．3		＋23
${ }_{14}^{99}$	${ }_{69}^{68}$	46． 2	+1 +1 1	二．362	＋．31	$\pm{ }^{+2}$	$\pm{ }_{-2.6}^{8}$	－ 3.0	－28		－26	＋．8	$\pm{ }_{-28}^{88}$
96	69	10.4	＋1	－． 356	＋．16	＋4．1	＋4．4	＋2．9	＋4．1		＋4．4		$+4.4$
150	69	24．0	＋1		＋．28	－1．6	-1.0	－2．3	－1．6		-1.0		
18	69	${ }_{27.6}^{28.2}$	$+1$	－	＋．87	$\overline{-1.0}$	$\pm+1.3$	－2．3	－1．3		＋1．3		± 1.3
	69	30.0	$+1$	＝．350	$\pm .06$	${ }_{-3.7}$	${ }_{-3.8}$	＋ 3.8	－ 1.7		－1．8		± 3.8
		52.4	＋1	－． 344	－． 02	＋1．8	＋1．9	＋1．8	＋1．8		＋1．9		＋1．9
168.	70	17.6	＋1			－22	－21	－ 23	－22		－21		
153	70	18.8		＝．337	＋．${ }_{19}$	$\pm{ }^{+9}$		＋1．3	＋．9	－4．4	＋1．5		＋1．5
151	70	27.6	$+1$	＝． .334	＋	-4.0	－3． 3	－ 4.7	－4．0	－4．4	－3．3	0	－4．3
141	70	48.6	$+1$	－． 329	－． 05	＋．8	＋．8	＋1．5	＋．8		＋．8		
70	71	${ }^{03.6}$	＋1	－ 325	＋．76	-1.0	$\pm .5$	二 ${ }^{-9}$		-2.0		＋ 5	$\pm .5$
152	71	11.8	＋1	＝ .322	＋．88	－2．0	－． 3	－2．8	－20		－ 3		
	71	${ }^{13.4}$	＋1	－． 322	＋．06	－3．8	-3.4	－ 4.0	－3．8		-3.4		－3．4
	71	13.6 55.4 1	+1 +1 +1	＝．3220	＋．${ }_{+}^{44}$	\pm	+1.0 +1.3	－ 1.9	＋．1		+1.0 +1.3		＋1．3
	72								－4．9		－4． 4		－4．1
	72	07.8	＋1	－． 307	＋． 73	－2．3	－． 9	－ 4.3		-23			
${ }^{69} 154$.	${ }_{72}^{72}$	${ }_{12.2}^{10.6}$	+1 +1 +1	二． 308	＋． 56	-1.0 +2.3	${ }_{+}^{+3.0}$	＋ 98 +1.8		－1．0		＋． 2	$\pm{ }^{+3.8}$
102	72	12.4	＋1	－． 308	$+1.15$	－3．3	${ }_{-1.2}$	-14.2	－3．3		－1．2		－1．2
103	72	17.0	＋1	－． 304	＋1．10	＋${ }^{-1}$	＋21	－3．2	＋${ }^{-1}$		＋21		＋21
1010	72	51.8	$+1$	－${ }^{2935}$	＋．41	－5．6	-4.8	－ 6.3	－5．6		－ 28		－4．8
$156{ }^{\circ}$	73	10.8	$+1$	－． 289	＋	－． 4	＋2．7	＝ 1.8	－． 1		＋．${ }^{-21}$		＋．7
95	7	11.0	＋1		－ 10	－． 8	－． 9	-1.0	－． 8		－． 9		－${ }^{19}$
1470	$\xrightarrow{73}$	${ }_{21.4}^{20.4}$	+1 +1	二．287	＋．30		＋2．9	－${ }^{1.6}$	－27	＋． 6	－2．1	$+.9$	＋
90	73	41.0	＋1	－． 281	＋． 61	＋2．8	＋4．0	＋1．5	＋28		＋4．0		＋4．0
170		43.2	＋1	－． 280	＋． 12	－1．7	－1．4	－2．0	－1．7		－1．4		－1．4
				－． 273			－2．4		－2．6		－2．4		－2．
	${ }_{75}^{74}$	40.8	${ }_{+1}^{+1}$	＝ 2.254	＋1．15	－2．6	－1．${ }^{\text {c }}$	-215	－1．6	－2		． 8	
17.	75	17.8	＋1	＝．254	$+.30$	＋1．5	＋22	＋1．0	＋1．5		＋22		＋2，
176	73	21.2	＋1	－．253	＋． 22	＋1．1	＋1．6	＋20	＋1．1		＋1．6		＋1．6
	75	21.4	$+1$	＝ 2253	＋． 78	-2.3 -1.0	－1．9	－ 21	－23	－1．0	－1．9	． 5	
175	75	34．4	＋1	－． 249	＋．42	＋．8	＋1．6	＋1．1	＋．8		＋1．6		＋1．6
54		${ }_{38} 3.0$	＋1	＝．249	$\pm .80$	$\bigcirc \cdot 1$	$+1.5$			－． 1		1.5	
215	75	${ }_{57.6}^{38}$	＋1	＝． 243	＋． 43	＋1．2	＋2．1	＋ 2	＋1．2		$+21$		＋2．1

a This station is used only with near－by stations to give a single observation equation．See table of groups on p． 119.

Observation equations for obtaining corrections to the coefficients of the gravity formula and to the depth of compensation-Con.

[^8]Observation equations for obtaining corrections to the coefficients of the gravity formula and to the depth of compensation－Con．

8tation number	$\begin{aligned} & \text { Double } \\ & \text { iatitivd } \end{aligned}$$2 \phi$		Coomeisent of－			Constant term for solution number－								
			x	y	z	1	2	1	4	5	6	7	8	
	888888888888888888888888898989898989898989898989			$\begin{array}{r} =0.033 \\ =.032 \\ =.031 \end{array}$										
${ }_{201}^{181}$		${ }_{0}^{08.4}$	${ }_{+1}^{+1}$		$\begin{array}{r} +0.02 \\ +.17 \\ +.27 \end{array}$	$\begin{array}{r} -2.5 \\ -2.6 \\ +.2 \end{array}$	$\begin{aligned} & -2.3 \\ & -3.8 \end{aligned}$	－1．7		－3．6．	－2．3．	－3．8	$\begin{array}{r} -2.3 \\ -8.8 \\ +.7 \end{array}$	
128.		12.6	＋1					＝${ }^{-4}$	＋．2		$\begin{aligned} & +.7 \\ & +.4 \end{aligned}$			
3 Ca		29.2	＋1	－． 023	+.19+.72+.83	$+8.2$	$\begin{array}{r} +.7 \\ +4 \\ +\quad 4 \end{array}$			．．．．．．		－2．909	＋${ }_{\text {－}}+8$	
${ }_{860} 80$		${ }_{35.0}^{31.0}$	＋1	＝．026		${ }_{-2.7}^{-3.4}$		－ 3.4		－－3．4．4				
196		${ }_{35.6}{ }^{3}$	$+1$		＋．08	－-4.5-7.3	-1.4-6.4-6.0	＝ 4.4-10.4	－4．5		－1．4		－1．4	
76		42.2	$+1$	＝．023	＋．73					－ $\begin{array}{r}7.3 \\ -1.0\end{array}$	－1．4．			
118.		${ }^{43.8}$	＋1		＋．19	-1.9+3.2	-2.2+3.4	＋2．9	＋3．2				-6.2-+31	
${ }_{40}^{180} \mathrm{M}$		47.2	$+1$	＝．021							＋3．9	-2.2		
129.		59.0	＋1	＝．018	+.52+.85+.07		＋1．0	\ldots	．．．．．． 0	．．．．．．．．．．	＋1．0	\ldots	＋1．0	
${ }^{52}$ a		0.8	＋1				$\begin{aligned} & -2.7 \\ & +2.8 \\ & +2.8 \end{aligned}$	－ 2.51		－2．6	$\begin{array}{r} -2.0 \\ +2.1 \end{array}$	－－7		
${ }_{24} 8$		${ }_{21.6}^{20.2}$	$+1$	二．011		$\begin{aligned} & -2.6 \\ & -3.1 \end{aligned}$				－				
50 a		20．6	$+1$		＋1．2i	－	± 2.1						－-2.9 .1.	
${ }_{177}^{510}$		${ }_{31.6}^{28.4}$	＋1	－． 0098	+1.05 +.00 +1	－4．9	-2.9 -.9	－ 6.0	－－1．7．${ }^{\text {a }}$		－ 0	$-2.9 \quad-2.9$		
100.		36.0	＋1	二． 0006	＋．09	-4.5-.8	－4．0	－． 0		－		-40	－2．9	
		38．2	＋1								＋1．7	．．．．．．		
199		${ }^{46.6}$	$+1$	＝．004	$\pm .01$	${ }_{-2.5}^{+1.7}$	＋1．7	＋ 2.2	± 2.5	……．．．．．．				
1820		55.6	＋1	二．0021	＋．08	+6.1+6.7	$+4.2$	＋ 3.6	$\pm{ }^{1.1}$		$\pm{ }^{+4.2}$	$\cdots \ldots . . .{ }_{-6.7}^{ \pm 4.2}$		
		57.4	＋1	－． 001			－6．7	－6．2						
187	90	02.6	＋1	＋．001	＋．08	－2．4	－2．3	－2．9		-2.4		－2．3．	$\begin{aligned} & -2.3 \\ & +1.2 \\ & +1.4 \end{aligned}$	
${ }_{20}^{89}$		87．6	＋1	＋．002	＋．02	-1.6-.4	－1．4	± 1.7	± 1.5	．．．．．．．．				
31.	${ }_{80}$	22.4	$+$	＋．003							－1．4	…．．．．．．．		
19 C		32.1	＋1	＋．009			-1.4	－ 2.0$=1.5$	．．．．．．．	……．．．．		．．．．．．．．．．		
		38． 1	＋1	＋．012	－．．．．．08	＋2．0				＋200	－1．4		－1．4	
${ }_{23}{ }^{13} \mathrm{C}$	${ }^{90}$	${ }^{42.8}$	$+1$				$\begin{aligned} & +1.9 \\ & -2 \end{aligned}$	± 2.6			＋1．0	$+1.9$	＋1．9	
1 Ca	90	47.3	＋1	＋．014		＋2．0							＋1．0	
8 C	90	88.9	＋1				－1．4	－ 1.7			－1．4			
186.		55.0	＋1	＋． 016	－． 09	－1．9	－2．0	－ 1.5		－1．9		－2．0	． 0	
1830		04.8	＋1	＋． 019	＋． 12	$+3.8$	＋4．1	＋3．3	＋3．8		＋4．1		＋4．1	
184.	91	08.0	$+1$	＋．020	$\pm .05$	＋1．8	＋1．9	＋1．7	＋1．8		＋1．9		＋1．2	
	91	${ }^{33.1}$	＋1	＋．027			－1．9	－2．5			－1．9		－1．8	
${ }^{3} \mathrm{M}$		44．2	＋1	＋．030										
${ }_{35}^{194 .}$	91	48．0	＋1	＋．031	－． 23	－1．7	－1．9	＋ 8		－1．7		－1．9	－1．9	
11 M	${ }_{91}$	88.0	$+1$	＋．033									－ 5.5	
36 M	91	59.0	$+1$	$+.035$									－5．7	
12 M	91	50.2	＋1	＋．035									－5．5	
13 M	92	03.0	＋1	$+.038$									－4．4	
		10.1	＋1	＋． 038			－${ }^{2}$	${ }^{-1.6}$			二－2			
${ }_{22} 8$		10.8 16.7	${ }_{+1}^{+1}$	＋．038	＋． 82	－6． 2	－4．6	-6.0	－5．2				$\stackrel{-4}{+8}$	
	92	18.1	＋1	＋．040			± 1.5	＋．7			$+1.6$		1．5	
${ }_{30} 80$	${ }_{92}^{92}$	${ }_{25.0}^{22.6}$	＋1	＋．041	＋． 30	－． 1	＋． 5	－． 3				． 5	． 4	
${ }^{18} \mathrm{M}$	92	28.0	＋1	＋．042									－．$\%$	
${ }_{28}^{21 \mathrm{C}}$	92	27.8	＋1	＋．043			＋． 8	－． 5			＋． 8		＋．8	
110.	92	28.4	$+1$	＋．043	＋．56	－． 5	＋． 7	＋1．1		－．．．${ }^{\text {b }}$		＋．7		
${ }^{32} \mathrm{M}$	92	29.8	＋1	＋．044										
109 M		${ }_{35.2}^{34.4}$	$+1$	＋．045	－． 04	－． 2	． 2	－ 3	－． 2		－． 8			
	92	36.8	$+1$	＋．046	＋．13	－4．6	－4．8	－4．1		－4．6		－4．3	－4．3	
34 M	92	38．6	$+1$	＋．048							＋22		${ }_{-20}^{+2.2}$	
		39.4	＋1	＋． 048									＋	
185.	92	${ }_{42} 6$	$+$	＋．047	＋． 14	－1．2	－2．0	${ }_{-2.3}^{1.6}$	－22		－2．0		－${ }_{-2}$	
2 C	92	44.9	$+1$	＋．048			＋．2	＋ 8			＋． 3		＋ 2	
${ }_{31} \mathrm{M}$	92	48．4	$+1$	＋．048									-1.0	
8 M	92	${ }_{48.2}$	$+1$	＋．049									－	
117	92	48.4	＋1	＋．049	－． 08	－3．8	－3．8	－1．8		－3．8		－3．8	－3．8	
118	92	50.4	$+1$	＋． 049									． 8	
7 M	92	52.0	＋1	＋．050										
12	93	00.9	＋1	$+.053$			＋1．3	＋1．8			＋1．b		＋1．3	
${ }_{2}$	${ }_{83}^{83}$	03．6	＋1	＋．053									＋1．4	
${ }^{6} \mathrm{C}$	${ }^{83}$	${ }_{35}^{25.1}$	＋1	＋．000				－． 8						
203．．．．．．．．．．．．．．．．．．．．	${ }_{93}^{98}$	${ }_{37.0}^{34.0}$	$+1$	＋．062	$\pm .01$	－5．9	－5．8	－ 4.8	－ 9		6． 8	－1．0	－1．0	

${ }_{6}$ This station is used only with near－by stations to give a single observation equation．See table of groups on p． 119.
b Station 87 onters solutions 1 and 4 as a part of group 3；solutions $2,3,6$ ，and 8 as a part of group 9 C，p． 120 ．

Observation equations for obtaining corrections to the coefficients of the gravity formula and to the depth of compensation-Con.

[^9]ARRANGEMENT OF GROUPG.

Group Ember	Inahuding stations	Coeficlent of			Constant term for solution number-							
		5	y	3	I	2	J	4	δ	5	1	8
1 In .	$5 \mathrm{In}, 26 \mathrm{In}$.	+1	-0.740									-3.0
2 In	$8 \mathrm{In}, 39 \mathrm{In}, 50 \mathrm{ln}$	+1	-. 738									-8.3
8 In	$9 \mathrm{In}, 98 \mathrm{In}$.	+1	-. 718									-3.2
4 In	$13 \mathrm{In}, 84 \mathrm{In} \ldots . .$.	+1	-. 709									-1.2
5 In .	$\left\{\begin{array}{l}6 \ln ^{106} \mathrm{In} \text { m, } 7 \mathrm{ln} \text {, }\end{array}\right.$	+1	-. 705									+1.0
6 In .	$12 \mathrm{Im}, 37 \mathrm{In}$.	+1	- . 604									-8.2
7 In .	20 In , $48 \mathrm{In} \ldots$.	+1	-. 682									-1.8
STa.	$48 \mathrm{In}, 50 \mathrm{In}, 107 \mathrm{In} \ldots$	$+1$	-. 672									-1.2
9 In ..	$14 \mathrm{In}, 55 \mathrm{In}, 87 \mathrm{In} . .$.	+1	-. 683									-1.2
111 In .	${ }_{19} 19 \mathrm{In}, 45 \mathrm{In}$ In, 9 l In.....	+1 +1	-. 659									-3.0
${ }_{12} 11 \mathrm{In}$.	$19 \mathrm{In}, 41 \mathrm{In}, 86 \mathrm{In} . .$.	+1	-. 656									-1.2
13 In .	15 In, 67 In...........	+1	-. 681									+1.0
14 In .	$33 \mathrm{In}, 42 \mathrm{In}, 103 \mathrm{In} .$.	+1	-. 624									-1.2
15 In	$6 \mathrm{In}, 78 \mathrm{In}$.	+1	- . 620									+8.5
16 In	${ }^{32}$ In. 60 In	+1	- . 602									+6.4
$18 .$.	3, 158..............	+1 +1	$=.592$	+0.63	-1.4	-0.1	-2.8	-1.4		-0.4		$\pm .2$
$18 \text { In. }$	$\left\{{ }^{1} \frac{\mathrm{In}}{77}{ }^{21} \mathrm{In}, 35 \mathrm{In}\right.$,	+1	-. 581									-1.0
19 In .	$2 \mathrm{In}, 30 \mathrm{In}, 51 \mathrm{Im} . . .$.	+1	- . 568									$+.7$
20 In	$87 \mathrm{In}, 100 \mathrm{ln}$.	+1	-. 504									+2.4
		$+1$	-. 492	$+.11$	- . 1	+.1	+ 3	-. 1		$+.1$		$+.1$
$21 \text { In. }$	$\int_{03}^{22} \ln 75 \mathrm{In}, 80 \mathrm{in},$	+1	-. 485									$+.7$
	96, 145.	+1	-. 362	+.29	$+.2$	$+.7$	$-.8$	$+.2$		$+.7$		+.7
	13, 143	+1 +1	=.398		-1.1	- ${ }^{\text {. }} .2$	-1.6	-1.1		-8. ${ }^{\text {- }}$		-8.6
	98, 141	$+1$	-. 342	+.08	+2.4	+2.6	+2.2	+2.4		+2.6		+2.6
	14, 166	+1	-. 338	+.16	-1.4	-1.0	-1.4	-1.4		-1.0		-1.0
	151, 154	+1	- . 320	+.38	-. 8	-. 2	-1.5	-. 8		-. 2		-. 2
		+1 +1	二-.308	+.84	-2.6	-1.8	+2.8 -2.4	-2.i		1.8		- -1.8

Observation equations for oblaining corrections to the coeficients of the gravity formula and to the depth of compensation-Con. ARRANGEMENT OF GROUPS-Continued.

The first column of the table on pages 115-119 contains the number of the station. Numbers without any letters appended refer to the United States stations given in the list on pages 50-52; the numbers followed by the letter "C" refer to the Canadian stations on page 54 ; the numbers followed by the letters "In" refer to the Indian stations given in the list on page 56 ; and the numbers followed by the letter " M " refer to the stations in the list on page 57.

The data in the above tables come from pages $50-60$ and $103-105$. All stations having anomalies numerically greater than 0.070 dyne have been excluded. For convenience the unit of n^{\prime}, and therefore of the other quantities involved, has been taken as 0.01 dyne. The unit distance in terms of which z is expressed in these equations is 28.4 km .; that is, the interval between the depths at which the various anomalies for stations in the United States are tabulated on pages 103-105. If the correction for topography and compensation be assumed to change uniformly with changing depth of compensation, that is, if $c=\frac{\partial z}{\partial t}$ is constant, then the value of c, with the units adopted, is the difference between the total corrections for topography and compensation for two depths differing 28.4 km ., expressed in units of hundredths of a dyne. An examination of the differences in the table on pages 100-102 will show that these are fairly constant, allowance being made for the effect of omitted decimals. When the observation equations were formed, these quantities carried to one more decimal place than is given on pages $100-102$ were available. A specimen of such data is given in connection with station 195, Lander, Wyo., on page 99. From the data for this station the following mean rates of change, in the units adopted, are deduced:

$$
\begin{aligned}
& \text { From } 42.6 \mathrm{~km} \text {. to } 56.9 \mathrm{~km} .=2(-3.62+3.70)=+0.16 \\
& \text { From } 56.9 \mathrm{~km} \text {. to } 85.3 \mathrm{~km},-3.28+3.62=+0.34 \\
& \text { From } 85.3 \mathrm{~km} \text {. to } 113.7 \mathrm{~km}=-2.75+3.28=+0.53 \\
& \text { From } 113.7 \mathrm{~km} \text {. to } 127.9 \mathrm{~km} .=2(-2.48+2.75)=+0.54 \\
& \text { From } 127.9 \mathrm{~km} \text {. to } 156.25 \mathrm{~km}=-1.98+2.48=+0.50 \\
& \text { From } 156.25 \mathrm{~km} \text {. to } 184.6 \mathrm{~km} .=-1.33+1.98=+0.65
\end{aligned}
$$

A preliminary investigation indicated that the depths of compensation in nearly all solutions would fall between 56.9 km . and 85.3 km ., or else very little below 56.9 km . The values of c used in the table of observation equations are therefore the mean rates of change between 56.9 km . and 85.3 km . These c 's are to be used only in connection with solutions for which the depth of compensation is determined. In these solutions the constant term, $-n^{\prime}$, is based on a depth of 56.9 km . In the second solution for mountain stations, in which the resulting depth is 94.9 km ., the anomalies for depth 113.7 km . and the corresponding c 's were used. These are not shown in the table of observation equations.

In order not to give too great influence to a small region that might contain many gravity stations, the following arbitrary procedure was adopted. A solitary station having no other station within 1 degree of it, either in latitude or longitude, gave a single observation equation of weight unity. If a number of stations occurred so that their latitudes were all within 1 degree of one another, and likewise their longitudes, these stations were made to constitute a group and the mean of the observation equations of the separate stations of the group was taken as the observation equation of the group, with weight unity. In taking this mean for the group, stations within a radius of 8 miles were treated as a single station by taking their mean, and giving the mean only the weight of a single station in averaging it with the other members of the group. An example of this is group 1, which contains stations 28,29 , and 30 , which are, respectively, Worcester, Boston, and Cambridge. The mean of the anomalies at Boston and Cambridge is +0.013 dyne and this is given equal weight in combining with the anomaly at Worcester of -0.012 dyne, giving a final mean for the group of 0.000 dyne. In the list of observation equations, stations that are used only as part of a group are designated by a reference mark which refers to a footnote when the details of the grouping require special mention. The latter part of the list of observation equations is made up of the mean equations for the various groups. When the observations were combined into zones of latitude, the mean of a group was given the same weight as a solitary station, the group being assigned to a zone according to the average latitude of its component members.

The normal equations were made up in the usual way. The probable error of z is found in the usual way from the solution of the normes equations. The quantities γ_{e}, B, and f are functions of x and y. Their probable errors are found by methods given in standard text books on the method of least squares.* (See note, p. 98.) These methods all require a knowledge of the numerical values of the derivatives of the functions in question with respect to the unknown quantitiss of the observation equations.

The formulas (partial derivatives), easily obtained from (4b) and (3) on page 113, and from the definitions of x and y near top of page 114, are

$$
\left.\begin{array}{l}
\frac{\partial \gamma_{\mathrm{s}}}{\partial x}=+1 \\
\frac{\partial \gamma_{e}}{\partial y}=-1 \\
\frac{\partial \gamma_{e}}{\partial z}=0 \dagger \tag{9}
\end{array}\right\}
$$

[^10]$\left.\begin{array}{l}\frac{\partial m}{\partial x}=-\frac{m}{\gamma_{e}} \\ \frac{\partial m}{\partial y}=\frac{m}{\gamma_{0}} \\ \frac{\partial f}{\partial m}=\frac{5}{2}-\frac{20}{3} m+\frac{17}{14} B \\ \frac{\partial f}{\partial B}=-1+\frac{17}{14} m+\frac{2}{21} B \\ \frac{\partial f}{\partial x}=\frac{\partial f}{\partial m} \frac{\partial m}{\partial x}+\frac{\partial f}{\partial B} \frac{\partial B}{\partial x} \\ \frac{\partial f}{\partial y}=\frac{\partial f}{\partial m} \frac{\partial m}{\partial y}+\frac{\partial f}{\partial B} \frac{\partial B}{\partial y} \\ \frac{\partial f}{\partial z}=0\end{array}\right\}$

These derivatives are so nearly constant that for the purpose in hand they could be computed once for all with average values of the quantities involved.

It will be found that the flattening depends almost whally on y, for $\frac{\partial f}{\partial y}$ is about -0.0000203 (in the units used in forming the observation equations) as against $\frac{\partial f}{\partial x}=-0.000000034$. A change of unity (i. e., 0.01 dyne) in the value of x will appear only in the third decimal of $1 / f$, so if it is desired to hold the flattening unchanged in the determinations it will be sufficient to make $y=0$, or, if some other flattening be fixed on in advance, in the adjustment the corresponding value of y may be determined without regard to the possible change in x. This was done in solutions $1 \mathrm{c}, 1 \mathrm{~d}$, and some others.

In comparing various gravity formulas, which differ among themselves in every term, the most convenient single number to afford a basis of comparison is the mean value of γ_{0} over the unit sphere. The general expression for this is

$$
\begin{equation*}
\text { Mean value }=\gamma_{e}\left(1+\frac{B}{3}-\frac{2 B_{4}}{15}\right) \tag{11}
\end{equation*}
$$

In the case of the solutions given here this is equivalent to

$$
\begin{equation*}
\text { Mean value }=979.75485+x-\frac{1}{3} y \tag{12}
\end{equation*}
$$

x and y being expressed in dynes instead of in units of 0.01 dyne, as in the observation and normal equations. The mean values resulting from the various adjustments are given on page 129.

The set of solutions numbered " 1 " in the preceding table was derived from all stations situated in the United States proper, except No. 218, North Tamarack, Mich., for which the data were not available in time, and stations 53 and 56 in Seattle, Wash., which were excluded because of their large anomalies. In all these stations the constant terms are for depth 56.9 km . and the z^{\prime} s are corrections to that depth. In solution 1a each solitary station and each group of stations is given equal weight. The normal equations are

$$
\begin{aligned}
& 173 x-34.572 y+42.17 z-182.3=0 \\
& -34.572 x+13.2991 y-11.8632 z+26.6250=0 \\
& 42.17 x-11.8632 y+26.3941 z-46.181=0
\end{aligned}
$$

From these $x=+1.2934, y=+1.7989, z=+0.4918$, and the formula for γ_{0} is

$$
\begin{gathered}
\gamma_{0}=978.025\left(1+0.005339 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
\pm 5 \quad \pm 11
\end{gathered}
$$

The depth of compensation is $70.9 \pm 10.0 \mathrm{~km}$. and the reciprocal of the flattening is 301.4 ± 1.0.

In solution 1b the stations or groups were assigned to seven zones and each station or group was given a weight inversely proportional to the number of stations and groups in the zone. This process must be substituted for the simpler one of using a mean equation for each zone, which would be practically equivalent if no depth of compensation were to be determined, because the c 's, unlike the other coefficients, vary widely within the zone.

The boundaries of the zones are in latitude $31^{\circ}, 34^{\circ}, 37^{\circ}, 40^{\circ}, 43^{\circ}, 46^{\circ}$, and 49°, the latter being the northern boundary of the United States. The zones are all three degrees in width, except the southernmost, which extends from station 1 (Key West, Fla.) in latitude $24^{\circ} 33^{\prime} .6$ to latitude $31^{\circ} 00^{\prime}$. It was widened in order to include a sufficient number of stations to be representative.

The normal equations are:

$$
\begin{aligned}
& 7 x-1.5606 y+1.7424 z-7.5950=0 \\
& -1.5606 x+0.6498 y-0.5448 z+1.2431=0 \\
& 1.7424 x-0.5448 y+1.0503 z-1.8980=0
\end{aligned}
$$

From these $x=+1.3574, y=+1.7233, z=+0.4490$. The formula for γ_{0} is

$$
\begin{gathered}
\gamma_{0}=978.026\left(1+0.005337 \sin ^{2} \phi-0.000007 \sin ^{3} 2 \phi\right) \\
\pm 5 \\
\pm 11
\end{gathered}
$$

The depth of compensation is $69.6 \pm 10.4 \mathrm{~km}$. and the reciprocal of the flattening 301.3 ± 1.0.
The flattenings deduced from $1 a$ and $1 b$ are not supported by determinations from other methods, which would indicate that the assumed flattening of $1 / 298.2$ is more nearly correct. It was therefore decided to hold the flattening at this figure. This may be done with sufficient accuracy by letting $y=0$.

Using separate stations and groups, we have for solution 1c, by omitting the second equation in $1 a$ and putting $y=0$ in the others,

$$
\begin{aligned}
& 173 x+42.17 z-182.3=0 \\
& 42.17 x+26.3941 z-46.181=0
\end{aligned}
$$

From these $x=+1.0274, z=+0.1082$, and the formula for γ_{0} is

$$
\begin{aligned}
\gamma_{\mathrm{o}}= & 978.040\left(1+0.005302 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
& \pm 1
\end{aligned}
$$

The depth of compensation is $60.0 \pm 9.5 \mathrm{~km}$.
This formula is referred to as the Coast and Geodetic Survey formula of 1916 for the United States.

If the anomalies at stations in the United States were due only to erroneous values of the equatorial gravity and of the depth of compensation used in the computation of the theoretical gravity, then this formula would be perhaps the best obtainable from the data at hand. But, as is shown on page 63, under the heading "Relation between the gravity anomalies and the topography," and on page 70, under the heading "Relation between the gravity anomalies and the geologic formation," the prevailing sign of the anomalies at stations on the seacoast and on Cenozoic formations is evidently due in part to some deviation from the normal of the densities in the strata of the upper crust which is systematic in its nature. The depth computed from the anomalies may be, and probably is, greatly influenced by this systematic effect. It is shown in other parts of this volume that a larger depth than 60 km . is probably nearer the truth. The equatorial value of gravity is not affected materially by the negative anomalies which predominate at the stations near the coast and in Cenozoic formation, as they are offset in great part by the anomalies in other formations which tend to be positive. (See pp. 70 to 78.) The anomalies (called the Hayford 1916 anomalies) based on the Coast and Geodetic Survey formula for 1916 for the

United States are shown in the table on pages 103-106 for purposes of comparison with the anomalies by the 1912 formula of the Coast and Geodetic Survey (called the Hayford 1912 anomalies), which is based on the greater depth of compensation, 113.7 km .

From other data a fattening of $1 / 297$ has been determined. To use this flattening in determining x and z (solution 1d), put $y=-0.642$ in the first and third equations of 1 a . The resulting equations are:

$$
\begin{aligned}
& 173 x+42.17 z-160.10=0 \\
& 42.17 x+26.3941 z-38.565=0
\end{aligned}
$$

From these $x=+0.9322, z=-0.0286$ and the formula for γ_{0} is

$$
\begin{aligned}
\boldsymbol{\gamma}_{0} & =978.046\left(1+0.005289 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
& \pm 1
\end{aligned}
$$

and the depth of compensation is $56.1 \pm 9.7 \mathrm{~km}$.
In solution 10 the flattening is held at $1 / 298.2$ and the stations are grouped by zones, as in solution 1b.

The normal equations for $1 e$ are:

$$
\begin{aligned}
& 7 x+1.7424 z-7.5950=0 \\
& 1.7424 x+1.0503 z-1.8980=0
\end{aligned}
$$

From these $x=+1.0820, z=+0.0122$, and the formula for γ_{0} is

$$
\begin{gathered}
\gamma_{0}=978.041\left(1+0.005302 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
\pm 1
\end{gathered}
$$

The depth of compensation is $57.2 \pm 9.8 \mathrm{~km}$.
The solutions numbered 2 a and 2 b include stations in the United States proper and the Dominion of Canada. No determination of the depth was possible, since no information as to the correction for topography and compensation of the Canadian stations was available for depths other than 113.7 km . In solution 2a each station and each group was given unit weight.

The normal equations for this solution are: "

$$
\begin{aligned}
& 208 x-31.281 y-96.1=0 \\
& -31.281 x+13.808183 y+3.2079=0
\end{aligned}
$$

From these $x=+0.6478, y=+1.2351$, and the formula for γ_{0} is

$$
\begin{gathered}
\gamma_{o}=978.024\left(1+0.005327 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
\pm 4
\end{gathered}
$$

The reciprocal of the flattening is 300.4 ± 0.8.
Solution 2 b is the same as 2 a , except that zones were used as in 1 b , though with somewhat different boundaries for the zones.

The normal equations are:

$$
\begin{gathered}
7 x-1.32 y-2.676=0 \\
-1.32 x+0.56230 y+0.060917=0
\end{gathered}
$$

From these $x=+0.6493, y=+1.4158$, and the formule for γ_{0} is

$$
\begin{gathered}
\gamma_{0}=978.022\left(1+0.005331 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
\pm 4
\end{gathered}
$$

The reciprocal of the flattening is 300.7 ± 0.8.
a In forming thesenormal equations the data used for the stations in Canada were those first communicated to the Survey. Afterwardsrevised values were sent, which appear in the table of observation equations. The corrections are too slight to affect the result seriously.

In the solutions numbered $3 a$ and $3 b$ the anomalies are found by the free-air method of reduction (correction for elevation, but not for topography and compensation). The stations are the same as those in solutions $2 a$ and $2 b$. In solution $3 a$ each station and each group is given unit weight, and the resulting normal equations are: ${ }^{a}$

$$
\begin{aligned}
& 208 x-31.281 y-161.1=0 \\
& -31.281 x+13.8082 y+52.8456=0
\end{aligned}
$$

From these $x=+0.3018, y=-3.1435$, and the resulting formula for γ_{0} is

$$
\begin{gathered}
\gamma_{0}=978.064\left(1+0.005238 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
\pm 5
\end{gathered}
$$

The reciprocal of the flattening is 292.6 ± 1.0.
In solution $3 \mathbf{b}$ each zone is given equal weight, the zones being the same as in solution $2 \mathbf{b}$. The normal equations are:

$$
\begin{aligned}
& 7 x-1.320 y-5.563=0 \\
& -1.320 x+0.56230 y+1.954694=0
\end{aligned}
$$

From these $x=+0.2498, y=-2.8899$, and the formula for γ_{0} is

$$
\begin{gathered}
\boldsymbol{\gamma}_{0}=978.061\left(1+0.005243 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
\pm 17
\end{gathered}
$$

The reciprocal of the flattening is 293.0 ± 1.4.
In order to test the constancy of the depth of compensation in various regions, the stations in the United States lying east of the ninety-eighth meridian were treated separately from those lying west of it. Solutions 4 a and 4 b are based on those stations east of the ninety-eighth meridian. In solution 4a each station and each group is given unit weight, and a depth of compensation, a value for the flattening, and the equatorial value are determined. The values of $-n^{\prime}$ are for depth of 56.9 km . The normal equations for 4 a are:

$$
\begin{aligned}
& 118 x-26.723 y+26.21 z-80.1=0 \\
& -26.723 x+10.265 y-8.167 z+17.691=0 \\
& 26.21 x-8.167 y+11.505 z-17.241=0
\end{aligned}
$$

From these $x=+0.7100, y=+0.0698, z=-0.0695$, and the formula for γ_{0} is

$$
\begin{gathered}
\gamma_{0}=978.036\left(1+0.005303 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
\pm 6
\end{gathered}
$$

The depth of compensation is $54.9 \pm 16.8 \mathrm{~km}$., and the reciprocal of the flattening is 298.3 ± 1.2.
In solution 4 b the conditions are the same as for 4 a except that the flattening is held as $1 / 298.2$, the value resulting from Helmert's formula of 1901. The normal equations are

$$
\begin{aligned}
& 118 x+26.21 z-80.1=0 \\
& 26.21 x+11.505 z-17.241=0
\end{aligned}
$$

From these $x=+0.7004, z=-0.0970$, the formula for γ_{0} is

$$
\begin{aligned}
& \gamma_{0}=978.037\left(1+0.005302 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
& \pm 2
\end{aligned}
$$

and the depth of compensation is $54.1 \pm 14.9 \mathrm{~km}$.
The solutions numbered 5 a and 5 b are based on stations in the United States west of the ninety-eighth meridian, treated in a way similar to those used in solutions 4 a and 4 b . In
solution 5 a each station and each group is given unit weight. The values of $-n^{\prime}$ are for depth 56.9 km . The normal equations are:

$$
\begin{aligned}
& 55 x-7.849 y+15.96 z-102.2=0 \\
& -7.849 x+3.0345 y-3.6967 z+8.9343=0 \\
& 15.96 x-3.6967 y+14.8890 z-28.940=0
\end{aligned}
$$

From these $x=+2.2099, y=+3.2312, z=+0.3772$, and the formula for γ_{0} is

$$
\begin{aligned}
\gamma_{0}= & 978.020\left(1+0.005368 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
& \pm 10 \quad \pm 22
\end{aligned}
$$

The depth of compensation is $67.6 \pm 12.9 \mathrm{~km}$., and the reciprocal of the flattening is 304.1 ± 2.0.
In solution 5 b the conditions are the same as for 5 a except that the flattening is held fixed at $1 / 298.2$. The equations, giving unit weight to each station and group, are

$$
\begin{aligned}
& 55 x+15.96 z-102.2=0 \\
& 15.96 x+14.8890 z-28.940=0
\end{aligned}
$$

From these $x=+1.8784, z=-0.0698$, and the value of γ_{0} is given by

$$
\begin{aligned}
& \gamma_{0}=978.049\left(1+0.005302 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
& \pm 2
\end{aligned}
$$

The depth of compensation is $54.9 \pm 12.6 \mathrm{~km}$.
The solutions with separate stations in mountainous regions gave greater depths than other solutions for other groups of stations in the United States, and as it is reasonably certain that the singlestation method gives a better value of the depth than the group method, it was decided to make solutions for the stations in the United States west of the ninety-eighth meridian without groups; that is, by the separate-station method. In the first of the two solutions, called 5 c , the equatorial gravity, the flattening, and the depth of compensation were determined.

The normal equations are

$$
\begin{aligned}
& 64 x-9.092 y+21.92 z-127.1=0 \\
& -9.092 x+3.319338 y-4.54995 z+11.2513=0 \\
& 21.92 x-4.54995 y+22.6422 z-53.946=0
\end{aligned}
$$

From these $x=+2.2016, y=+4.1200, z=+1.0790$, and γ_{0} is given by

$$
\begin{gathered}
\gamma_{0}=978.011\left(1+0.005387 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
\pm 19 \quad \pm 21
\end{gathered}
$$

The depth of compensation is $87.5 \pm 10.6 \mathrm{~km}$. and the reciprocal of the flattening is 305.8 ± 1.9.
In the solution 5 d the flattening was held at $1 / 298.2$. The normal equations are:

$$
\begin{aligned}
& 64 x+21.92 z-127.1=0 \\
& 21.92 x+22.6422 z-53.946=0
\end{aligned}
$$

From these $x=+1.7503, z=+0.6881$ and γ_{0} is given by

$$
\begin{gathered}
\gamma_{0}=978.048\left(1+0.005302 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
\pm 2
\end{gathered}
$$

The depth of compensation is $76.4 \pm 10.8 \mathrm{~km}$.
If the Canadian stations east of the ninety-eighth meridian be joined with those in the United States, no determination of the depth of compensation is possible, since the only depth for which the corrections for topography and isostatic compensation are available for Canadian stations is 113.7 km . In solution 6 this depth is used and each station or group east of the ninety-eighth meridian in Canada or the United States is given unit weight. The normal equations are then *
$146 x-25.174 y-35.6=0$
$-25.174 x+10.455634 y+2.5569=0$

From these $x=+0.3448, y=+0.5857$, and the formula for γ_{o} is

$$
\begin{gathered}
\gamma_{0}=978.028\left(1+0.005314 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
\pm 4 \quad \pm 11
\end{gathered}
$$

The reciprocal on the flattening is 299.2 ± 1.0.
Solution 7 is based on stations in the United States and Canada west of the ninety-eighth meridian. The depth is fixed at 113.7 km . and each station or group is given equal weight. The normal equations are

$$
\begin{aligned}
& 62 x-6.107 y-59.3=0 \\
& -6.107 x+3.352549 y+0.8568=0
\end{aligned}
$$

From these $x=+1.1349, y=+1.8118$, and the formula for γ_{0} is

$$
\begin{gathered}
\gamma_{0}=978.023\left(1+0.005339 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
\pm 8 \quad \pm 17
\end{gathered}
$$

The reciprocal of the flattening is 301.5 ± 1.5.
The solutions numbered 8 a and 8 b are based on all available stations in the world between the latitudes of station 179In, Bombay (India) and station 6 M , Scharfenstein (Germany). The only depth of compensation for which data are available is 113.7 km ., and this has therefore been held fixed. Stations with an anomaly numerically exceeding 0.070 dyne based on Helmert's formula of 1901 were excluded. It was found that 358 stations could be used. For solution 8a the stations and groups of stations were divided into 11 zones each 3 degrees of latitude in width; the southernmost zone includes Bombay and extends to the twenty-second parallel. The other bounding parallels are the twenty-fifth, twenty-eighth, etc. All stations used in these solutions are in north latitude.

Results for the individual zones.

Zone.	Bounding parellels.	Number of stations or cravis	Mean value of $-\cos 2 \phi$	Mman anomaly.	Zone.	Bounding parallels.	Number of stations or groups.	Mean value of $-\cos 2 \phi$	Mean anomaly.
	$\begin{array}{r} \cdot \\ 22 \\ 22-25 \\ 5-28 \\ 28-31 \\ 31-34 \\ 3-87 \end{array}$	$\begin{aligned} & 6 \\ & 14 \\ & 13 \\ & 17 \\ & 21 \\ & 28 \end{aligned}$	$=0.748$ $=.680$ $=.609$ $=.120$ $=.320$	Dynes. +0.0212 $\pm .0176$ +.0042 +.0009 +.0028	$\begin{aligned} & 7 . . \\ & 8 \ldots \\ & 9 . \\ & 10 . \\ & 11 . \end{aligned}$	$\begin{aligned} & 37-40 \\ & 40-43 \\ & 43-46 \\ & 46-49 \\ & 49-52 \end{aligned}$	$\begin{aligned} & 33 \\ & 27 \\ & 41 \\ & 41 \\ & 14 \end{aligned}$	$\begin{array}{r} -0.218 \\ =.115 \\ +.017 \\ +.185 \end{array}$	$\begin{aligned} & \text { Dynes. } \\ & +0.0014 \\ & +.0069 \\ & +.0099 \\ & +.0008 \\ & +.0066 \end{aligned}$

There is a total of 252 separate stations and groups of stations. Each zone was given unit weight. The normal equations that follow from these are

$$
\begin{aligned}
& 11 x-3.381 y-7.09=0 \\
& -3.381 x+2.034353 y+2.57810=0
\end{aligned}
$$

From these $x=+0.5213, y=-0.4008$, and the formula for γ_{0} is

$$
\begin{gathered}
\gamma_{0}=978.039\left(1+0.005294 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
\pm 4
\end{gathered}
$$

The reciprocal of the flattening is 297.4 ± 1.0.
The fact that the mean anomalies for some of the zones are based on comparatively few stations or groups of stations as compared with the other zones suggests that it would be of interest to weight each zone proportionately to the number of stations it contains. This process is (except for probable errors) almost exactly equivalent to that of giving each station and each group unit weight. With weights thus taken, the normal equations for solution 8 b , are

$$
\begin{aligned}
& 252 x-52.855 y-149.1=0 \\
& -52.855 x+28.027 y+23.9=0
\end{aligned}
$$

From these $x=+0.6829, y=+0.4352$, and the formula for γ_{0} is

$$
\begin{gathered}
\gamma_{0}=978.032\left(1+0.005311 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
\pm 11
\end{gathered}
$$

The reciprocal of the flattening is 298.9 ± 1.0.
On pages 63-67 is given a list of anomalies at stations in the United States computed from the United States Coast and Geodetic Survey formula of 1916; that is, for solution 1c. This formula with depth 60.0 km . represents the observations somewhat better than the 1912 formula with depth 113.7 km . except for the 20 stations in mountainous regions above the general level, for which the average anomaly with regard to sign is +0.016 dyne by the 1916 formula. It is therefore natural to inquire what formula and what depth would fit those stations better. The effect of the change of depth on the computed compensation is large for these stations, so that a depth of compensation would be better determined from them than from an equal number of stations elsewhere. However, it seemed to be illogical to take only the stations above the general level and to exclude other stations in the same regions, perhaps within a few miles. Therefore the 36 stations in mountainous regions below the general level (see p. 108) were likewise included in the adjustment. There is no separate column for the constant terms of this solution in the table of observation equations on pages 115 to 120.

This adjustment was made in two ways. First the groups were broken up, each station being taken by itself, and only the 56 stations in mountainous regions were included. Second, where the stations occurred near together groups were used, just as in other cases. These groups included four stations not in mountainous regions.

When the groups were broken up and each station was given unit weight the normal equations for this solution (called 9a) became:

$$
\begin{aligned}
& 56 x-9.017 y+27.48 z-38.2=0 \\
& -9.017 x+2.6091714 y-5.18505 z+1.6404=0 \\
& 27.48 x-5.18505 y+18.7226 z-15.279=0
\end{aligned}
$$

From these $x=+1.3506, y=+3.8278, z=-0.1061$. The anomalies and the c 's in this solution are computed for the depth of 113.7 km . and the z is a correction to that depth. The resulting formula for γ_{0} is

$$
\begin{gathered}
\gamma_{0}=978.005\left(1+0.005380 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
\pm 14 \quad \pm 31
\end{gathered}
$$

The reciprocal of the flattening is 305.2 ± 2.9 and the depth of compensation is $110.7 \pm 20.3 \mathrm{~km}$.
Solution 9 b is based on the same data, but the flattening was held fixed at $1 / 298.2$. The normal equations for solution $9 b$ are

$$
\begin{aligned}
& 56 x+27.48 z-38.2=0 \\
& 27.48 x+18.7226 z-15.279=0
\end{aligned}
$$

From these $x=+1.0066$ and $y=-0.6613$. The formula for γ_{0} is

$$
\begin{gathered}
\gamma_{0}=978.040\left(1+0.005302 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
\pm 4
\end{gathered}
$$

The depth of compensation is $94.9 \pm 19.7 \mathrm{~km}$.
When the usual groups are taken, the normal equations for the solution (called 9c) are

$$
\begin{aligned}
& 44 x-6.879 y+19.25 z-64.9=0 \\
& -6.879 x+2.056157 y-4.23457 z+9.057=0 \\
& 19.25 x-4.23457 y+16.2641 z-29.779=0
\end{aligned}
$$

From these $x=+1.5433, y=+1.6542, z=+0.4350$. The anomalies and c 's in this solution
are computed for the depth 56.9 km ．and the z is a correction to this depth．The resulting formula for γ_{o} is

$$
\gamma_{0}=978.029\left(1+0.005336 \sin ^{\frac{1}{2}} \phi-0.000007 \sin ^{2} 2 \phi\right)
$$

The reciprocal of the flattening is 301.2 ，and the depth of compensation is 69.3 km ．
In solution 9d the flattening is held fixed at $1 / 298.2$ but the remaining conditions are the same as in the solution 9 c ．The normal equations for solution 9 d are

$$
\begin{aligned}
& 44 x+19.25 z-64.9=0 \\
& 19.25 x+16.2641 z-29.779=0
\end{aligned}
$$

From these $x=+1.3977$ ，and $z=+0.1766$ ．The resulting formula for γ_{0} is $\gamma_{0}=978.044\left(1+0.005302 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right)$
and the depth of compensation is 61.9 km ．
It is evident that the method of grouping high and low stations in forming the equations destroys the peculiar sensitiveness of the high stations to a change in depth．Therefore the values of the depth by the group solution（9c）should not be considered as having a strong weight as compared with the values of the depth by the single－station solution（9b）．

The author believes that the depths derived from the single－station solution for moun－ tainous regions are nearer the truth even for the whole United States than any other depth determined from other groups of gravity stations．（See p．112．）The solutions of separate stations in the western part of the United States give values for the depth of compensation which are greater than for other solutions except those mentioned above．The stations in the West are，in general，either in mountainous regions or on high plains．

The results of the foregoing solutions are summarized in the following table，which also contains some additional items of information，namely，the mean value of gravity and the probable error of an observation of unit weight．Except in the column for the mean value of gravity and in the lines for solutions 9c and 9d the presence of a value for the probable error of a quantity indicates that the quantity in question was determined by the solutionitself，and the absence of a value for the probable error indicates that the quantity was fixed in advance．

Constants of the gravity formulas and related quantities as derived from the various solutions．

Solution No．	Equatorial value of grav－ ity．	Coefficient of $\sin { }^{2} \phi$ ．	Mean value of gravity for the earth．	Reciprocal of flattening．	Depth of com－ pensation．	Probable error of an observa－ tion of unit weight．
13.	Dyres．		Dymer．		Km ．	Dynes．
	978.023 ± 4.6	． 0053337 ± 10.7	979.763	301.3 ± 1.0	69.8 ± 10.4	± 0.0133 $\pm .0027$
	978.040 ± 1.8	．005302	979.765	W8．2	60.0 ± 9.5	$\pm .0135$
1 d	978.046 ± 1.3	． 005289	979.766	297.0	56.1 ± 9.7	$\pm .0137$
1 e	978.041 ± 1.3	． 005302	979.766	298.2	57.2 ± 9.8	$a \pm .0027$
23.	978.024 ± 3.9	$.005327 \pm 9.0$	979.757	300.4 ± 0.8	113.7	$\pm .0133$
2 b	978.022 ± 3.7	$.005331 \pm 9.2$	979.757	300.7 ± 0.8	113.7	土．0025
3 a	978.068 ± 5.1	$.005238 \pm 12.0$	\％ 9.788	292.6 ± 1.0		$\pm .0176$
	978.061 ± 6.8	． 005243 ± 18.6	979.767	293.0 ± 1.4		$\pm .0045$
4 4	978.038 ± 6.1	$.005303 \pm 14.1$	979.762	298.3 ± 1.2	54.9 ± 16.8	$\pm .0120$
4 b	978.037 ± 1.6			20．3	54.1 ± 14.9	$\pm .0125$
3 s	978.020 ± 9.7	． 005368 ± 21.6	979.768	304.1 ± 2.0	67.6 ± 12.9	土． 0138
	978.049 ± 2.3	． 0053302	979.774	298.2	84.9 ± 12.8	$\pm .0142$
	978.011 ± 9.5	． 005387 ± 21.1	Tovits	305.8 ± 1.8	87.5 ± 10.6	$\pm .0141$
$5 d$.	978.048 ± 2.3	． 005302	979.772	\％es 2	76.4 ± 10.8	$\pm .0148$
	978.028 ± 4.5	． 005314 ± 10.8	979.756	299.2 ± 1.0	113.7	$\pm .0130$
	978.023 ± 7.6	． 005339 ± 16.8	979.760	301.5 ± 1.5	113.7	$\pm .0136$
	978.039 ± 4.3	． 005294 ± 11.8	979.761	297.4 ± 1.0	113.7	${ }^{ \pm} \pm .0057$
	978.032 ± 4.4	． 005311 ± 10.9	979.760	298.9 ± 1.0	113.7	$\pm .0220$
	978.005 ± 14.4	． 005380 ± 31.2	979.750	305.2 ± 2.9	110.7 ± 20.3	$\pm .0158$
	978.040 ± 4.0	． 0055302	979．765	28，2	94.9 ± 19.7	士．0158
	078．039	． 0053338	F9．765	301.2	193	
	P08804	． 006302	\％17\％	－8．2	61.8	

STATEMENT CONOERNING THE VARIOUS BOLUTIONS THE RESULTS OF WHICH ARE GIVEN IN THE above table.

In the solutions in which separate stations and groups of stations were used, each separate station and each group of stations was given unit weight.

In the solutions in which the stations were taken by zones, each zone was given unit weight, except in solution 8b.

UNITED GTATES BTATIONB, GOLUTIONS ta TO 1 .
1a. Separate stations and groups of stations were used in the determination of equatorial gravity, the flattening and the depth of compensation.
1b. Zones were used in the determination of equatorial gravity, the flattening, and the depth of compensation.
1c. Separate stations and groups of stations were used and the flattening was held fixed at $1 / 298.2$ in the determination of equatorial gravity and the depth of compensation.
1d. Separate stations and groups of stations were used and the flattening was held fixed at $1 / 297$ in the determina tion of equatorial gravity and the depth of compensation.
1e. Zones were used and the flattening was held fixed at $1 / 298.2$ in the determination of equatorial gravity and the depth of compensation.

UNITED BTATEB AND CANADIAN GTATIONE, BOLUTIONS 2a AND 2 b .

2a. Separate stations and groups of stations were used and the depth was held fixed at 113.7 km . in the determination of equatorial gravity and the flattening.
2 b . Zones were used and the depth was held fixed at 113.7 km . in the determination of equatorial gravity and the flattening.

Untted states and canadian stationg by the free-arr method of reduction, solutions 3a and bb.
3a. Separate stations and groups of stations were used in the determination of equatorial gravity and the flattening.
3b. Zones were used in the determination of equatorial gravity and the flattening.
UNTTED ETATES ETATIONE BAST OP THE NTNETY-EXGHTH MERTDLAN, SOLUTTONS 49 AND 4b.
4a. Separate stations and groups of stations were used in the determination of equatorial gravity, the flattening, and the depth of compensation.
4b. Separate stations and groups of stations were used and the flattening was held fixed at $1 / 298.2$ in the determination of equatorial gravity and the depth of compensation.

6a. Separate stations and groups of stations were used in the determination of equatorial gravity, the flattening, and the depth of compensation.
©b. Separate stations and groups of stations were used and the flattening was held fixed at $1 / 298.2$ in the determination of equatorial gravity and the depth of compensation.
Sc. Separate stations only were used in the determination of equatorial gravity, the flattening, and the depth of compensation.
5d. Separate stations only were used and the flattening was held fixed at $1 / 298.2$ in the determination of equatorial gravity and the depth of compensation.

UNITED BTATES AND CANADLAN ETATIONS EAET OF THE NLNETY-EIGETH MERIDIAN, gOLUTION 6 .
6. Separate stations and groups of stations were used and the depth was hold fixed at 113.7 km . in the determination of equatorial gravity and the flattening.

UNITED ETATEG AND CANADIAN GTATIONS WEET OF TEE NINETY-RIGHTH MERIDLAN, GOLUKION $\%$
7. Separate stations and groups of stations were used and the depth was held fixed at 113.7 km . in the determination of equatorial gravity and the flattening.

GTATIONE IN THE UNTTED GTATEG, OANADA, EWKTZERYAND, INDLA, ITALY, GERMANX, AND AUETRUA, BOLUTIONE SA AND Sb.
8a. Zones were used, the zones having equal weight, and the depth was held fized at 113.7 km . in the determination of the equatorial gravity and the flattening.
8b. Zones were used, the zones weighted according to the aggregate number of stations and groups in a zone, and the depth was held fized at 113.7 km . in the determination of equatorial gravity and the flattening.

UNITED ETATES ETATIONS DN MOUNTANOUS REGIONG, BOLUTIONS 9a TO gd.
$9 a$. Separate stations only were used in the determination of equatorial gravity, the flattening, and the depth of compensation.
9b. Separate stations only were used and the flattening was held fixed at $1 / 298.2$ in the determination of equatorial gravity and the depth of compensation.
9 c. Separate stations and groups of stations were used in the determination of equatorial gravity, the flattening, and the depth of compensation.
9d. Separate stations and groups of stations were used and the flattening was held fixed at $1 / 298.2$ in the determina tion of equatorial gravity and the depth of compensation.
For completeness and for comparison with the above formulas for the intensity of gravity there is given here Helmert's most recent formula. ${ }^{a}$ With probable errors attached it reads:

$$
\begin{gathered}
g_{\mathrm{o}}=978.052\left[1+0.005285 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi+0.000018 \cos ^{2} \phi \cos 2\left(\lambda+17^{\circ}\right)\right] \\
\pm 3
\end{gathered}
$$

in which ϕ, as usual, is the geographic latitude and λ is the longitude from Greenwich, east longitude being positive. The formula corresponds to a spheroid with three unequal axes, the shorter equatorial axis being in longitude 73° east from Greenwich and the longer, which exceeds the shorter by 230 m ., in longitude 17° west of Greenwich. The reciprocal of the mean polar flattening is 296.7 ± 0.4. The mean value of gravity over the sphere is 979.771 dynes. The formula is based upon 410 stations in all parts of the world selected for being neither too near to the coast nor to mountainous regions and upon certain coast stations which were given reduced weight. The coefficient of $\sin ^{2} 2 \phi$ is based on theory. (See p. 113.) The coast stations were used in determining all other constants except the first one, which from coast stations alone had the special value of 978.068 dynes. The precise number of coast stations is not given. The formula, when the first coefficient is used as 978.052 , represents gravity reduced by the free-air method for stations in the interior and not in mountainous regions. No tests have yet been made to determine how well this formula represents gravity in the United States.

HELMERT'S DEPTH OF COMPENSATION FROM GRAVITY OBSERVATIONS.

Helmert derived a depth of compensation of about 120 km . from data for 51 selected coast stations distributed throughout the earth's surface. ${ }^{b}$ He used in his determination the differences between the observed values of gravity reduced to sea level by the frea-air method and the values at sea level computed by his 1901 formula. The observed values were in general considerably greater than those computed.

The stations were arranged in several groups, each group containing the stations in some special type of topography, and a depth was derived from the data for each group, namely, that depth for which the correction for topography and isostatic compensation would account for the mean observed free-air anomaly of the group. For group 1 it was 107 km ., for group 2 it was 124 km ., and for groups 3 and 4 together 123 km .; the mean value was 118 km .

If the free-air method of reduction is used, Helmert's formula of 1901 should represent, on the average, gravity at stations in the interior, not in mountainous regions. But for stations in this class in the United States the average anomaly (free air) is +0.009 dyne. (See p.67.) If the equatorial constant were increased to 978.039 to represent this class of stations better, the anomalies of the coast stations would be correspondingly reduced and the depths indicated would be: Group 1, 80 km .; group 2, 89 km .; groups 3 and 4 together, 78 km ., with a mean of 83 km . Helmert's 1915 formula indicates that gravity in the United States is slightly below normal, for according to the formula minimum gravity occurs in longitude 107° west, and if allowance were made for this the previous correction of +0.009 dyne would be further increased and the resulting depth further diminished. A rough estimate of the effect of using Helmert's 1915 formula may be obtained by noting that according to it

[^11]average gravity over the unit sphere is 0.016 dyne greater than according to his 1901 formula. If the anomalies in each group are diminished by 0.016 dyne, the depths implied are: Group 1, 62 km .; group 2, 64 km .; groups 3 and 4 together, 46 km ., making the mean 58 km ., which is about the value found by the various solutions for the United States, except the solution from the 56 stations in mountainous regions. This 58 km . by Helmert's method is of course based on anomalies at coast (and probably largely Cenozoic) stations, which, as is indicated in other parts of this volume, are subject to systematic errors due to smaller densities than normal in the upper strata of the earth's crust. While the value of 58 km . agrees well with the depth given for the Coast and Geodetic Survey formula for 1916 for the LInited States, it should not necessarily be considered as being nearer the truth than the greater depths.

Chapter IX.-SUMMARY.

The group of publications of the Coast and Geodetic Survey dealing with deflections and gravity values shows that isostasy exists in a form nearly perfect in the United States as a whole, also that there is nearly perfect isostasy in areas which form comparatively small percentages of the area of the entire country.

The conclusions which may be drawn from the investigation reported in this volume substantiate to a great extent the conclusions arrived at from previous investigations. This is an important fact, for 70 per cent more gravity stations in the United States were used at this time than in the preceding gravity investigation and many stations in Canada, India, and Europe, for which data were available, were also used.

The depth of compensation was derived from the 216 stations in the United States and was found to be 60 km . When the stations were divided into different groups, other depths were obtained. They agreed in general with the value determined from all of the stations. An exception is in the case of the stations in mountainous regions, 56 in all. The values of the depth of compensation determined from these are 111 km . and 95 km . on two somewhat different assumptions. Owing to the fact that at stations in mountainous regions above the general level the values of gravity are very sensitive to a change in depth, it is believed that the value of the depth determined from the stations in mountainous regions has greater strength than the other values.

The author believes that the best value for the depth of componsation is the mean of the Hayford value ${ }^{a}$ of 97 km ., which was obtained from deflection data at stations in mountainous regions and the value of 95 km . derived from gravity data at stations in mountainous regions. This mean is 96 km . The author believes that future values of the depth of compensation derived from much more extensive data will fall between 80 and 130 km . (See p. 112 and fig. 8.)

For the United States there was found a decided relation between the sign of the Hayford gravity anomalies and the coast. The reason for this is explained in the following paragraphs. There was no relation found between the sign and the size of the Hayford anomalies and any other class of topography. There were found the usual relations between the elevations of the stations and the gravity anomalies based upon the Bouguer and the free air methods. (See p. 61 and figs. 13 and 14.)

Decided relations were found in the United States and in India betweon the sign of the gravity anomalies and the Cenozoic geologic formation. The anomalies at stations located on this formation tend to be negative. In the United States a number of the Cenozoic stations are located on or very near the coast. As stated above, there appeared to be a relation between the gravity anomalies and the coast. This is probably explained by the presence of the very light material of the Cenozoic formations, which is present along nearly all the Atlantic and Gulf coasts of the United States. It seems probable that the negative anomalies at Cenozoic stations are in large part due to the presence of subnormal densities in the upper crust below sea level.

There were found decided relations between the pre-Cambrian, Paleozoic, and Mesozoic formations and the sign of the gravity anomalies for the area of the United States. No very definite relations were observed in Canada and in India. (See pp. 70-84.)

It was found as a result of certain computations and investigations that local distribution of the compensation of a topographic feature is in general nearer the truth than regional distribution of the compensation out to the outer limit of zone $0(167 \mathrm{~km}$.). It is not clear whether local distribution is more probable than the regional distribution out to the limit of zone \mathbf{M} (59 km .). (See pp. 91 and 92.)

The difference in the anomalies at two stations which are close together horizontally, but which have a large difference in the elevations, seemed to indicate some error in the height formula used to compute the correction to gravity for the elevation of the station above sea level. A careful study of the matter showed no error in the formula, but it seemed to indicate that the difference in the anomalies could result from the combination of several causes no one of which could alone make the difference. (See pp. 93-96.)

The best formula resulting from this investigation with which to obtain the theoretical value of gravity at any latitude in any part of the world was derived from 216 stations in the United States, 42 in Canada, 73 in India, and 17 in Europe, 348 stations in all. (See solution 8a, p. 127.) For each of these stations the reduction for topography and isostatic compensation had been made by the Hayford method, using the same or very similar tables to those in Special Publication No. 10.

The formula is

$$
\gamma_{0}=978.039\left(1+0.005294 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right)
$$

in which γ_{0} is the value of gravity sought and ϕ is the latitude of the station.
The first term of the formula is the theoretical value of gravity at the equator. From the constants of this formula was derived a value for the reciprocal of the flattening of the earth, which is 297.4. This value of the flattening is very close to other values recently derived from geodetic data in the United States and elsewhere. In the author's opinion it may be considered as at least equal in strength to any other value derived from geodetic data. It is only 0.4 larger than Hayford's best value from deflections, 297.0. It is only 0.8 less than Helmert's value of 1901 , and only 0.6 lower than the author's value of 1912. It is only 0.7 larger than Helmert's value of 1915.

The values of the terms in the other gravity formulas and for other depths of compensation are of interest and value as showing how conditions may be different in different parts of the country. The table of values shown on page 129 is remarkable in showing values which are so accordant although derived from data under different conditions and in different areas.

If we assume that all the differences between the observed and computed values of gravity in the United States are due to errors in the assumed equatorial gravity and the depth of compensation, then the most probable gravity formula derived from data in this country alone is

$$
\gamma_{0}=978.040\left(1+0.005302 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right)
$$

and the derived depth of compensation is 60 km . The equatorial value of gravity in this formula agrees well with the world formula. It is from this formula that the 1916 Hayford anomalies were computed.

From the various evidence it may be concluded that the average depth is probably greater than 60 km . As stated above, it is probably not far from being 96 km .

The cause of the greater part of the anomalies is believed to be in general the deviation from normal in the densities in the upper.crust probably not far below sea level.

The study of the tables and maps accompanying this volume will convince one that in the regions considered the deviation of the earth's crust from a state of perfect isostasy is slight, even for areas of comparatively small size.

The evidence near Seattle, Wash., Minneapolis, Minn., and Washington, D. C., is conclusive that the cause of an anomaly is not regional in extent. If it were, the anomalies which are close together would not show such changes in sign and size.

A problem presents itself to the gepdesists of the world which can be easily solved. It is that each nation reduce its own gravity stations for topography and isostatic compensation by some rational method and publish the results. It will be well if the same system is employed by each nation, and to this end the International Geodetic Association will no doubt gladly lend its aid. If this work were done, the results would be of very great value to many branches of science.

BIBLIOGRAPHY.

No claim to exhaustiveness is made for the following list of articles and passages in books and memoirs dealing with isostasy and related subjects. No attempt has been made to cover the more general field of articles treating of the constitution of the interior of the earth.

The arrangement of articles is approximately chronological, according to the date of publication.

There were premonitions of the idea of isostasy long before it was definitely formulated. The French expedition to Peru observed latitudes north and south of Mount Chimborazo, and Bouguer ${ }^{a}$ expresses surprise at the small deflection of the vertical produced by the mountain, as compared with what he had been led to expect by his calculations from its size and density. He speculates on the possibility of cavities, but does not elaborate much on the subject. A more modern instance is that of Petit, who found the effect of the attraction of the Pyrenees on the latitude of Toulouse small but opposite in sign to what he had expected. ${ }^{\text {b }}$ Boscovich, ${ }^{\text {c }}$ in attempting to explain the phenomena, approaches the modern idea rather more closely. Commenting on Bouguer's result, he expresses the opinion that the mountains are swellings caused by the earth's internal heat. "If this be the case," he says, "no matter is added there and the empty space within the vitals compensates all the visible matter that rears itself up into the mountain mass." Probably examples of other premonitions could be gathered, but the subject passes beyond mere speculation only when some attempt is made to get a numerical estimate of the effects involved. Extensive calculation on the subject began with Archdeacon Pratt, whose name therefore heads the list.

The name "isostasy" seems to have been proposed and first used by Maj. C. E. Dutton. (See list for 1889 under his name.) Lowthian Green has been referred to as an early advocate of the idea of isostasy. His book, "Vestiges of the Molten Globe," London, 1873, is not available at this writing and references to it do not make plain whether he used the word "isostasy" or not. In any case Maj. Dutton seems to have coined the word independently.
1855.
J. H. Pramt, On the attraction of the Himalaya Mountaine and of the elevated regions beyond upon the plumb-line in India, Philosophical Transactiona of the Royal Society of London, vol. 145, p. 53.
G. B. Arry, On the computation of the effect of the attraction of mountain masses as disturbing the apparent astronomical latitude of stations in geodetic surveys, Philosophical Transactions of the Royal Society of London, vol. 145, p. 101.
1859.
J. H. Pratt, On the influence of the ocean on the plumb-line in India, Philosophical Transactions of the Royal Society of London, vol. 149, p. 779.

- On the deflection of the plumb-line in India caused by the attraction of the Himalaya Mountains and of the elevated regions beyond; and its modification by the compensation effect of a deficiency of matter below the mountain mass, Philosophical Transactions of the Royal Society of London, Vol. 149, p. 745.

1871.

J. H. Pratr, On the constitution of the solid crust of the earth, Philosophical Transactions of the Royal Society of London, vol. 161, p. 385.
1880.
H. A. Faye, Sur la réduction des observations du pendule au niveau de la mer, Comptes Rendus, vol. 90, p. 1443.

1881.

C. S. Parros. On the deduction of the ellipticity of the earth from pendulum experimenta, U, S. Coast and Geodetic Survey Report for 1881. Appeadix 15.

[^12]
1882.

G. II. Darwin, Un the stresees caused in the interior of the earth by the weight of continents and mountains. Phile sophical Transactions of the Royal Society of London, vol. 173, pp. 187-230.
1883.
H. A. Faye, Sur la réduction du baromètre et du pendule au niveau de la mer, Comptes Renduß, vol. 96, p. 1259.
1884.
F. R. Helmert, Die mathematischen und physikalischen Theorieen der höheren Geodäsie, Vol. II, chap. 4.

1889.

G. K. Gilbert, The strength of the earth's crust, Bulletin of the Geological Society, vol. 1, p. 25.
C. E. Dutron, On some of the greater problems of physical geology, Bulletin Washington Philooophical Society, vol. 11, pp. 51-64.
R. S. Woodward, Mathematical theories of the earth, American Journal of Science, 3 ser., vol. 38, p. 351; also Science, N. S., vol. 1, p. 194.
O. Fisher, Physics of the earth's crust, London and New York.

W J McGee, The Gulf of Mexico as a measure of isostasy, American Journal of Science, 3 ser., vol. 44, pp. 177-192.
Baleey Wilirs, Mechanics of Appalachian structure, Thirteenth Annual Report U. S. Geological Survey, pp. 237-280.

1894.

G. R. Putnam, Relative determinations of gravity with half-second pendulums and other gravity investigations with notes on geologic formations by G. K. Gilbert, U. S. Coast and Geodetic Survey Report for 1894, Appendix 1.

1895.

G. R. Putnam, Results of transcontinental series of gravity measurements, Bulletin Washington Philosophical Society, vol. 13, p. 61.
G. K. Grlbert, Notes on the gravity determinations reported by G. R. Putnam, Bulletin Washington Philosophical Society, vol. 13, p. 61.
1896.
F. Lescie Ransome, The great valley of California: A criticism of the theory of isostasy, University of California, Bulletin of the Department of Geology.
1800.
O. E. Schiorzz, Results of the pendulum observations and some remarks on the constitution of the earth's crust (The North polar expedition, 1893-1896, by Fridtjof Nansen), London.
1902.

Adams, An experimental contribution to the question of the depth of the zone of flow in the earth's crust, Journal of Geology, vol, 20, pp. 97-118.
1903.
O. Hecker, Bestimmung der Schwerkraft auf dem Atiantischen Ozean sowie in Rio de Janeiro, Liseabon und Madrid. Veröffentlichung des Königlich Preussischen geodätischen Institutes. Neue folge, No. 11.
O. H. Tittmann, Geodetic Operations in the United States, 1900-1903, a report to the Fourteenth General Conference of the International Geodetic Association, United States Coast and Geodetic Survey, 1903.
1908.
J. F. Haypord, The geodetic evidence of isostasy with a consideration of depth of compensation and the bearing of the evidence upon some of the greater problems of geology, Proceedings of the Washington Academy of Sciences, vol. 8, p. 25.
O. II. Titrmann and J. F. Hayford, Geodetic Operations in the United States, 1903-1906, a report to the Fifteeuth General Conference of the International Geodetic Association, United States Coast and Geodetic Survey, 1906.
1907.
J. F. Haypord, The earth a failing structure, Bulletin Wrahington Philosophical Society, Vol. 15, p. 57.
O. E. Schiötz, Die Schwerkraft auf dem Meere längョ dem Abfall der Kontinente gegen die Tiefe. Christiania.

1908.

F. R. Helmert, Unvollkommenheiten im Gleichgewichtszustande der Erdkruste, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, No. XLIV, p. 1058.
O. Hecker, Bestimmung der Schwerkraft auf dem Indischen und Grossen Ozean und an deren Küsten sowie erdmagnetische Messungen Zentralbureau der Internationalen Erdmessung. Neue folge der veröffentlichungen, No. 16.
Laska, Ueber die Isostasie der Erdkruste. Oesterreichische Zeitschrift für Vermessungswesen, Vol. VIII.

1809.

O. Hecker, Die Schwerebestimmung an der Erdoberfäche und ihre Bedeutung für die Ermittelung der Massenverteilung in der Erdkruste. Zeitschrift der Gesselschaft für Erdkunde. 1909, p. 361.
F. R. Helmert. Die Tiefe der Ausgleichsfäche bei der Prattschen Hypothese tür das Gleichgewicht der Erdkruste und der Verlauf der Schwerstörung vom Innern der Kontinente und Ozeane nach dem Küsten, Königlich Preussischen Akademie der Wissenschaften No. XLVIII, p. 1192.
J. F. Haypord, Figure of the earth and iscstasy, from measurements in the United States, U. S. Coast and Geodetic Survey.
--. Supplementary investigation of the figure of the earth and isostasy, U. S. Coast and Geodetic Survey.
O. H. Tittmann and J. F. Hayford, Geodetic Operations in the United States, 1906-1909, a report to the Sixteenth General Conference of the International Geodetic Association, United States Coast and Geodetic Survey, 1909.

1910.

O. Hecker, Bestimmung der Schwerkraft auf dem Schwarzen Meere und an dessen Kuste sowie neue Ausgleichung der Schwerkraftsmespungen auf dem Atlantischen, Indischen und Groszen Ozean. Zentralbureau der Internationalen Erdmessung; neue folge der Veroffentlichungen, Nr. 20.
J. F. Hayford and Wiliam Bowie, The effect of topography and iecstatic compensation upon the intensity of gravity, U. S. Coast and Geodetic Survey.
Balley Willis, What is terra firma? A review of current rescarch in isoatasy, Smithsonian Report, 1910.
O. Z. Branco, La Gravità alla Superficie del Mare e l'ipotesi di Pratt. Rivista Geografica Italiana, vol. 17.
O. E. Schrörz, Über die Reduktion von Pendelbeobachtungen auf den Meeresspiegel, Beiträge zur Geophysik, vol. 10, p. 234.
F. R. Helmert, Die Schwerkraft und die Massenverteilung der Erde, Encyclopädie der Mathematischen Wissenschaften, Band VI 1B. Heft 2.
L. de Marchi, La Teoria Elastica dell' Isostasi Terrestre. Beiträge zur Geophysik, vol. 10, p. 177.

Review of the figure of the earth and isostasy from measurements in the United States by J. F. Hayford, 1909, American Journal of Science, vol. 29, p. 193.
Th. Niethammer and others, in the Procès Verbal de la $56{ }^{\text {re }}$ séance de la Commission Géodésique Suisse. Neuchatel, 1910, pp. 37-38 and 43-49.
1911.
J. F. Haypord, The relation of isostawy to geodesy, geop,hysics, and geology, Science, vol. 33, p. 199.
O. Eggert, Review of the figure of the carth and isostaay from measurements in the United States, by J. F. Hayford, 1909. Zeitschrift far Vermessungawesen, vol, 40, p. 534.

Harmon Lewis, The theory of isostasy, Journal of Geology, vol. 19, p. 603.
A. E. H. Love, Some problems of geodynamics. Cambridge, England.
P. G. Nutting. Isostasy, oceanic precipitation, and the formation of mountain systems, Science, vol. 34, p. 453.
H. F. Reid, Isostasy and mountain ranges, American Philosophical Society Proceedings, vol. 50, p. 444.

Alpred Ruhl, Isostasie und Peneplain, Zeitschrift der Gesellechaft für Erdkunde, vol. 7, p. 479.
M. P. Rudser, Physik der Erde. Leipsig.
E. Kohlschürter, Über den Bau der Erdkruste in Deutach-Ostafrika. Nachrichten vou den Königlichen Gesellschaft der Wiesenschaften gu Göttingen.
R. Schumann, Über die Anwendung der Theorie vom Massenausgleich auf Vermessungen durch die Coast and Geodetic Survey der Vereingten Stasten, Oesterreichische Zeitschrift fur Vermesoungswesen.
G. Cassinis, Sull' Applicazione del Metodo lsostatico alla Riduzione delle Misure de Gravità, Rome.

1912.

Wilhiam Bowie, Effect of topography and isostatic compensation upon the intensity of gravity, second paper, U. S. Coast and Geodetic Survey.
——, Some results of the Hayford method of gravity reduction, Journal of Washington Academy of Sciencee, vol. 2, p. 499.
-. Some relations between gravity anomalies and geologic formations in the United States, American Journal of Science, 4th ser., vol. 33, p. 237.
J. F. Haypord, Isostasy, a rejoinder to the article by Harmon Lewis, Journal of Geology, vol. 20, p. 562.

Alpred Wegener, Die Entstehung der Kontinente. Petermanns Mitteilungen, vol. 58, pp. 185, 253, and 305.
L. V. King, Limiting strength of rocks under conditions of etress existing in the earth'e interior, Journal of Geology, vol. 20.
H. L. Crosthwart, Investigation of the theory of isostasy in India, Survey of India, Professional paper No. 13.
S. G. Burrard, The origin of the Himalaya Mountains, Survey of India, Professional paper No. 12.
H. H. Hayden, The relatiouship of the Himalaya to the Indo-Gangetic Plain and the Indian Peninsula, Records of the Geological Survey of India, vol. 43, pt. 2.
Lenox-Conyngram, Note in reply to Mr. Hayden's paper on the relationship of the Himalaya to the Indo-Gangetic Plain and the Indian Peninsula, Records of the Survey of India, vol. 5, p. 161.
G. R. Putnam, Condition of the earth's crut, Science, vol. 36, p. 869.

Adelbert Prey, Untersuchungen über die Isostasie in den Alpen auf Grund der Schweremessungen in Tirol. Sitzungsberechte der Kaiserlichen Akademie der Wissenschaften in Wein. Vol. CXXI, p. 2467.
O. H. Tittmann, Geodetic Operations in the United States, 1909-1912, a report to the Seventeenth General Conference of the International Geodetic Association, United States Cosst and Geodetic Survey, 1912.
F. R. Helmert, Die Erfahrungggrundlagen der Lehre vom allegemeinen Gleichgewichtszustande der Massen der Erdkruste, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, No. XX, p. 308.

1913.

H. Wolyf, Die Schwerkraft auf dem Meere und die Hypothese von Pratt, Inaugural-Disertation, University of Berlin.
G. K. Gilbert, Interpretation of the anomalies of gravity, United States Geological Survey, Professional paper No. 85C.
E. Hưbner, Beitrag zur Theorie der Isostatischen Reduktion der Schwerebeschleunigungen, Beiträge zur Geophysik, vol. 12, p. 588.
G. G. Burrard, The mountains and their roots, Nature, vol. 91, p. 242.
T. C. Chamberlin, Diastrophism and the formative process, Journal of Geology, vol. 21, p. 6, vol. 8, pp. 517, 523, 673.
J. W. Spencer, Relationship between terrestrial gravity and observed earth movements of eastern America, American Journal of Science, vol. 35, p. 561.
1914.

Whinam Bowie, Isostasy and the size and shape of the earth, Science, vol. 39, p. 697.
-I Isostasy in India, Journal of the Washington Academy of Sciences, vol. 4, p. 245.
T. H. Holland, Isostasy, The Australian meeting of the British Association, Section C, Geology, Nature, vol. 94, p. 8. L. de Marchi, Come si formano le montagne, La Geografia, vol. 2, p. 161.

Louis B. Stewart, The form and constitution of the earth, Journal of the Royal Astronomical Society of Canada, vol. 8, p. 1.
Joseph Barrell, The strength of the earth's crust, Journal of Geology, vol. 22 (series of articles continued in vol. 23)
F. R. Helmert, Die isostatiche Reduction der Lotrichtungen, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften. No. XIV, p. 440.
1915.
H. J. Couchman, The pendulum operations in India and Burma, Survey of India, Professional paper No. 15.
R. Schumann, Ueber die Anwendung der Theorie vom Massenausgleich, Oesterreichische Zeitschrift für Vermessungswesen (Zweiter Bericht), Vol. XIII.
George F. Becker, Isortasy and radioactivity, Bulletin of the Geological Society of America, vol. 26, pp. 170-204, Science, vol. XLI, p. 157.
T. C. Ceamberlin, Harry Fielding Reid, J. F. Hayford, Symposium on the earth: Its figure, dimensione, and the constitution of the interior, American Philosophical Society Proceedings, vol. 54, p. 279.
F. R. Helmert, Neue Formeln für den Verlauf der Schwerkraft im Meeresniveau beim Festlande, Sitzungeberichte der Königlich Preussischen Akademie der Wissenechaften No. XLI, p. 676.
W. de Sitter, Isostasy, the moments of inertia and the compression of the earth, Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings of the section of sciences, vol. 17, pt. 2, p. 1295.
Émile Belot, Le déficit et l'excès de la pesanteur sur les continents et les iles en rapport avec la condition isostatique de la croúte terrestre, Comptes Rendus, vol. 161, p. 139.

1916.

C. F. Close, Gravity deflections in the Ande8, Geographical Journal, vol. 47, p. 464.
S. G. Burrard, The plains of northern India and their relationship to the Himalaya Mountains, Nature, vol. 97, p. 391.
W. H. Hobss, Assumptions involved in the doctrine of isostatic compensation, with a note on Hecker's determination of gravity at sea.- Journal of Geology, Vol. XXIV, No. 7, p. 690.

PART II.-SUMMARIES OF GRAVITY OBSERVATIONS AND DESCRIPTIONS OF STATIONS.

CHAPTER I.-ABSTRACTS OF RESULTS.

In this part of the volume are given the abstracts of the observations made at the base station in the office of the United States Coast and Geodetic Survey at Washington, D. C., and at the field stations in the United States established in 1909 and later years, for which similar data have not already been published in the various reports of the Survey. There are also given the descriptions of all the stations.

An index on page 187 gives the names of the stations and the pages of the various publications in which gravity data may be found.

STANDARDIZATION OF THE PENDULUMS AND METHODS OF OBSERVING USED IN THE FIELD.
As is stated on page 49, the pendulums were standardized at the Washington station before and after a field season or between two seasons which were not long separated in time.

Usually the mean of the two values of the periods of a pendulum determined at the base station before and after a season's field work was used in the determination of the relative intensity of gravity at the field stations. An exception to this general rule occurred when it was found, after the season extending from June to December, 1909, that the periods of the pendulums had been affected between standardizations by a film of foreign substance, which had accumulated on the agate planes of the pendulums. Upon the removal of the film the pendulums resumed nearly their former Washington periods. (See p. 141.)

Beginning with the standardization of the pendulums in 1912, each of the pendulums had its period determined each time by swinging it continuously between consecutive determinations of the chronometer corrections. This plan has been followed since that time, both at the base station and in the field in establishing new stations. The previous custom had been to swing all of the pendulums of a set during the interval between two determinations of the chronometer corrections. It was only occasionally that more than two determinations of the chronometer corrections were made at a station.

Each of the pendulums of a set is now swung for at least 24 hours in three periods of 8 hours each, while previously each pendulum was swung for only 16 hours at a station in two periods of 8 hours each unless unfavorable weather prevented time observations on the stars at the end of the 48 -hour period. In the earlier work the variation in the rate of the chronometers would occasionally make a large range in the values of the gravity at a station determined by the separate pendulums, but the mean of all the values was free from the effect of change in rate.

In the present method, where the period of a pendulum is obtained from separate time determinations, the result for any one pendulum is not affected by variation in the rate of the chronometers.

ABSTRAOTS OF RESULTS.

In the table on pages 144-176 are given the pendulum observations and reductions for the stations in the United States which were determined in 1909 and later years. Similar data for the stations established before that year are given in other publications of the Survey,
which are indicated in the index on page 187. The number of a station is the same as was used in the various tables and the discussion in Part I of this volume. (See especially the table on $\mathrm{pp} .50-52$.)

The tables need little explanation. Under the heading "Total are" are given the values of the are through which the pendulum oscillates at the beginning and at the end of a period whth is usually about 8 hours long. The period given has been corrected to reduce to an infinitesimally small arc.

The standard temperature is $15^{\circ} \mathrm{C}$., and a correction is applied to the period for any deviation of the observed from the standard temperature. The standard pressure of the air in the pendulum case is 60 mm . of mercury. A correction must also be applied for deviations of the pressure from the standard.

Finally there is the correction for flexure. This is necessary because the force of the pendulum in motion makes a sympathetic swinging of the pendulum case and its support, and this in turn reacts on the pendulum and affects its period. The flexure is determined by means of the interferometer, which is described in Appendix 6 of the Report for 1910. The flexure of the case and its support makes the period too long, and consequently the correction necessary to reduce the period to what it would have been in a rigid structure is negative.

It will be noticed that the period of a pendulum is determined by its comparison with each of two chronometers. This is done to avoid mistakes and to make the effect of accidental errors smaller.

The coincidence interval, as its name suggests, is the time which elapses between two consecutive coimcidences between the beat of the chronometer and the swing of the pendulum.

The pendulums were swung in the direct position in all cases, both at the base stations and in the field. This fact is indicated in column 3 of the tables. The pendulums are designated as $\mathrm{A} 4, \mathrm{~A} 5$, and A 6 in one set and B4, B5, and B6 in the other. The pendulums used are indicated in the second column.

The tables do not state whether there were local time observations or comparisons of the chronometers with the noon signals sent out from the Naval Observatory over the commercial telegraph lines (The Western Union and Postal Telegraph Companies). It is evident, however, from the data in the columns of corrections for rate that there was such a determination between the two swings where a change in the rate corrections occurs. If the rate corrections at a station are the same for each swing, then there were only two determinations of the chronometer corrections at that station, one at the beginning and the other at the end of the entire set of observations, as it is quite unlikely that the computed rates during two intervals between three different time comparisons would come out exactly identical.

During the first season of 1909, the season of 1914 , and the first season of 1915 pendulum 134 showed great changes in its period. Careful inspection of the pendulum failed to discover any cause for this. It was finally decided to strengthen by an additional rivet the connection between the stem and the bob; after this was done no further trouble occurred..

There is given below a summary of the periods at the base station of the six United States Coast and Geodetic Survey pendulums. These periods were used in computing the relative intensity of gravity at the field stations.

Summary of periods of pendulums resulting from standardizations at the base station, Coast and Geodetic Survey Office, Washington, D. C.

Date	Mean periods						Observer
January, 1909.	A4 0. 5008393	A5 0. 5006615	$\begin{gathered} \text { A6 } \\ 0.5006240 \end{gathered}$	$\begin{gathered} \text { B4 } \\ 0.5008091 \end{gathered}$	$\begin{gathered} \mathrm{B5} \\ 0.5007230 \end{gathered}$	$\begin{gathered} 136 \\ 0.5007031 \end{gathered}$	W. E. Burger
June, 1909...	. 500 m 368	. .5006612	. 5006251	. 5008229	. 5007212	. 5007036	W. ${ }_{\text {Do. }}$
Novernber, 1909	. 500×320	. 5000361	. 5006208				Do.
Decomber, 1809.	. 500×362	. 5006695	a. 5006248	. 5008257	. 5007220	. 5007040	Do.
Do........	. 5008363	. 5006592	a. 5006234				Do.
May, 1910.	. 5008353	. 50065.88	. 5006233				Do.
Oetober, 1910	. 5008348	. 5006002	. 5006257	. 5008246	. 5007220	. 5007016	H. D. King.
June, 1911	. 5008374	. $5006 \mathrm{R18}$	a. 5006265				'T. L. Warner.
Do...	. 50003360	. 50006622	c. 5006289				Do.
January, 1912.	. 5008392	. 50063635	. 5006286	. 5008126	. 5007232	. 5007042	Do.
July, 1914	. 5008377	. 5006023	b. 5006287	.5008117	. 5007225	b, 5007026	C.I. Garnerand
Do.	. 5008385	. 5008639	c. 5006272	. 5008119	. 5007228	c. 5007020	J. D. Powell. Do.
January, 1915	. $500 \$ 373$. 5000629	. 5006288	. 5008178	.5007210	. 5007023	Do.
July, 1915.	. 5004379	- 500ki629	. 5006278	. 5008289	.5007207	. 5007013	Do.
January, 1916.	. 500×392	. 5006639	. 5006301	. 5008292	. 5007209	. 5007014	Do.
Moan.	. 5008369	. 5006613	. 5006282		. 5007219	. 5007026	
- -							

a The mean was used.

- Rate corrections were determined from star observations.
e Rate corrections were determined from the noon signals sent by telegraph from the Naval Observatory at Washington, D.C.
During the second season of 1909 , mentioned on page 139, in which the periods of the pendulums were affected by films of foreign substance on the agate planes on which the pendulums swing, W. H. Burger established the following stations in the order given. The table shows which stations were reoccupied, the name of the second observer, and the value of gravity adopted.

Number and name of station	Reoccupied in 1910 or 1911 by-	Adopted value of gravity	Number and name of station	Reoceupied in 1910 or 1911 by-	Adopted value of gravity
108. Cloudland, Tenm			88. Wilson, N. Y		
103. Hughes, Tenn.	T. L. Warner	vaiw	89. Alpena, Mich.		
103. Fort Kent, Me			87. Iron Rivar, Miah	H. D. King.	880.683
85. North Hero, Vt	H. D. King	980. 588			
87. Potsiam, N. Y			60. Mitchall, S. Dak.		

In order to strengthen the field work, stations Hughes, North Hero, and Iron River were reoccupied as is indicated in the above table. The King and Warner values were adopted for North Hero and Hughes, respectively. The Burger value for Iron River when the November 4 to 10,1909 , Washington periods were used differed only 0.006 from King's value. The mean of the two determinations for that station was adopted. The November 4 to 10, 1909, Washington periods were also used in computing the value of gravity at Ely, Pembina, and Mitchell. (See p. 87 of Special Publication No. 10).

For Cloudland the Washington periods of November 4 to 10, 1909, and Warner's periods at station Hughes were used as standard values. North Hero and Iron River, with their adopted values of gravity, were used as the base stations for Lake Placid, Potsdam, Wilson, and Alpena. Hughes and North Hero, with their adopted values of gravity, were used as bases in determining the value of gravity at Fort Kent.

From July, 1914, until January, 1916, the chronometer corrections at the base stations and at field stations were obtained from comparisons with the noon signals sent over the lines of the Western Union and the Postal Telegraph companies from the Naval Observatory at Washington. At the beginning of each month the corrections to the time as sent out by the observatory were furnished for each day of the preceding month. These corrections were seldom greater than 0.10 second. Before the year 1914 the chronometer rates were determined by the gravity parties from local time observations on the stars with an astronomic transit.

The lests at the base station and at field stations showed that the time by telegraph gave as satisfactory results as the time determined by local astronomic observations. Of course there were errors in the absolute time as received at a field station over the telegraph wires due to the time of transmission, but this error was probably very nearly the same for each day at a station, and the effects on the rate determinations of the chronometers were not appreciable.

In the table on page 141 there are given the results of two standardizations in July, 1914, one with local time and the other with time from the observatory. The two results agree closely.

There are given below the values of the gravity at three stations at which both local and Naval Observatory time was used in rating the chronometers. The values indicate that the observatory time by telegraph is satisfactory.

Name of station	Observer	Date	Time used	Observed gravity
Wilmer, Ala	\{H. D. King.	1911	Local time.	879.346
	T. L. Warner.	1914	Noon signals.	570.34
Albuny, N. Y.	C. I. Garner.	1914	Noom slgnals.	980.344
Little Rock, Ark.	$\left\{\begin{array}{l}\text { G. R. Putnam } \\ \text { I, Powell }\end{array}\right.$	1896	Local time..	970 720
			Noon signals.	979.728

The use of the observatory time materially lessens the work and the cost of establishing a gravity station.

There is given below a table which shows the chronometer rates at stations near and at others which are distant from Washington. These rates were determined from the comparisons with the Naval Observatory time received by telegraph. The range in the daily rates at the distant stations is about the same as the range for the near ones. As there are two chronometers, it can be seen whether the rates are due to errors in the time signals or to conditions not connected with those signals. For instance, when the rate for one day is considerably lower by both chronometers than for the other two days it is probable that this is due to the time signals. This might be the case for the first 24-hour period at station 194 (Huntley, Mont.). This is also the case for the first interval at station 202 (Moorcroft, Wyo.). Here the error was of such size that the observer swung his pendulums a fourth day. On the other hand, at station 192 (Poplar, Mont.) the third day gives a low rate for one chronometer and a normal rate for the other, and the cause of the variation of the first could not have been an error in the time signals.

The chronometers are subject to the temperature changes which occur in the pendulum room, which no doubt cause variations in the rates, but, as the pendulums are swung almost continuously for the interval between the determinations of the chronometer corrections, no appreciable errors enter into the mean period for a pendulum from the variation in rate.

Chronometer rates.

STATIONS NEAR WASEINGTON (MAXIMUM DISTANCE 800 KM .).

Number and name of station	Date, 1915	Daily rates		Number and name of station	Date, 1915	Daily rates	
		Clironometer No. 1823	Chronometer No. 1841			Chronometer No. 1823	Chronometer No. 1841
146. Richrnoud, Va	Feb. 9-10.... Feb. 10-11.... Feb. 11-12.	$\begin{array}{r} \text { Seconds } \\ -3.89 \\ -3.78 \\ -3.99 \\ -2.87 \\ -2.28 \\ -3.85 \end{array}$	Scconds$\begin{aligned} & -2.07 \\ & -2.07 \\ & -2.27 \end{aligned}$	155. Knoxville, Tenn............	May 10-12.	Scconds -3.47	Seconds -3.23
						-3.71	-3.23 -3.40
					May 13-14.	-3.45	-3.36
147. Emporia, V8	Feb. 2425.		-2.18	156. Bristol, Va	May 19-20.	-3.92	-3.58
	Feb. 25-26.		-1.82		Msy 20-21.	-3.80	-3.61
148. Greenville, N. C.	Mar, 9-10..		-2.82		May 21-22.	-3.56	-3.42
	M8r. 10-11.		-2.97	209. Laurel, Md	Nov. 18-19.	-2.19 -2.24	+3.08 +3.45
149. Wilmington, N, C	Mar. 16-17.	-3.81	-2.88		Nov. 21-22	-2.24	+3.85 +3.55
	Mar. 17-18.	-3. 56	-2.63	212. Rockville, Md	Nov. 27-28.	-1. 51	+2. 55
150. Cheraw, 8. C.	Mar. 18-19..	-3.68	-2. 63		Nov. 28-29	-1. 88	+2.35
	Mar. 25-26.	-3.73	-2.89		Nov. 29-30.	-2.20	+2.46
	Mar. 26-27.	-3.84	-3.15	214. Fairfax, V	Dec. 3-4.	+0.27 +0.45	+3.20 +3.34
151. Charlotto, N. C.	Mar. 22-30 Apr. 5-6...	-3.46 -2.65	-2.92		Dec. $4-5$. Dec. $5-6$.	+0.45 +0.66	+3.34 +3.40
134. Winston-Balem,	Apr. 6-7.	-2.64	-205	213. Upper Marlboro, Md.	Dec. 11-12.	+2.26	+3.41
	Apr. 7-8.	-2.26	-2.06		Dec. 12-13.	+1.62	+3.72
	Apr. 12-13.	-3.38	-2.73		Dec. 13-14.	+1.01	+3.86
152. Asheville, N, C.	Apr. 13-14... Apr.	-3.54	-3.10 -2.93		1916.		
	Apr. 22-23.	-1.02	-3.21	219. Hagerstown, Md	Jan. 8-9..	-1.92	$+3.35$
153. Cleveland, Tenn	Apr. 23-24.	-4.14	-3.36	210. Hagoratown,	Jan. 9-10..	-1.65	+3.38
	A pr. 24-26...	-3.97	-3.32		Jan. 10-11.	-2.09	+3.57
	Apr. 30-M8y	-3.88	-3.09				
	May 1-2... May 2-3...	$\begin{aligned} & -3.86 \\ & -3.75 \end{aligned}$	$\begin{aligned} & -3.04 \\ & -3.12 \end{aligned}$				

gTATIONS DISTANT FROM WASHINGTON (MAXIMUM DISTANCE 2700 KM ; MINIMUM DISTANCE 1400 KM .).

Pendulum observations and reductions．
［Chronometer numbers are shown in boldfaced type，both in box headings and the body of the table．］

	$\begin{aligned} & \text { © } \\ & \text { 릉 } \\ & =1 \end{aligned}$	E	
	－		
Ieriod corrected	$\begin{aligned} & \text { 를 } \\ & \text { Hi } \end{aligned}$		
	$\begin{aligned} & \text { ह. } \\ & \text { c. } \\ & \text { 혈 } \\ & \text { है } \end{aligned}$		
			 ర్ర్రీ
	囟曹	｜｜｜｜｜｜｜1｜｜｜｜｜｜｜｜｜｜｜｜1｜	
	｜¢ \％ m	$t+++t+t+t+t+t++++++t+t++$	$t+t+t+t+t+t+t+t+t+t+t+t+$
		¢ $t+t+t+t+t+t+++t+t+t+t+t+$	$t+t+t++++t+++t+t+t+t+t+t$
	$\begin{aligned} & \text { 安灾 } \\ & \text { an } \end{aligned}$	$+t+t+t+t+\quad+t+t+t+\quad+t+t+1$	
	要息置	$t++++++++++++++t++++++++$	$t+t+t+t+t+t++t+t+t++t+t+$
	¢	 	$11\|11111\| 111111111111111$
Period uncorrected			
	\$i d		
	范		
	少态		
Coincidence in－terval		 	む్ర
$\begin{aligned} & \mathbb{B} \\ & \mathbf{⿴ 囗} \end{aligned}$		\＄かocoso 	
	\％	AAAAAAAAAAAAAAAARARAAAAA	
	$\begin{aligned} & 60 \\ & \text { 髫。 } \\ & 60 \end{aligned}$		
	Station and observer		

$\begin{gathered} \text { \&anc } \\ \text { sio } \end{gathered}$		$\begin{aligned} & \text { ªxy } \\ & \text { ©icio } \end{aligned}$			$\begin{aligned} & \text { neme } \\ & \text { cis } \\ & \text { Bit } \end{aligned}$		$\begin{aligned} & \text { m్ర్ర } \\ & \text { ©io } \\ & \text { ©ity } \end{aligned}$

 $111111++++++11$

 $1111111111111111++11111111111111111111111111+111111111111111$
 111

웆ํํํํํ สิถึส่ส่ส่ส	 	\＄8우웅ㅇㅇㅇ 	 	 	இ88 がべジェ்	 	88루ㅇㅕㅕ 	
ベージージー・		 	$0 \infty 00000$ 	 	ONにいOロ －Minier	のにN 0000 		$+\infty$
N.roon	Nombund	Tonocom	トヘーがッロ 	$\rightarrow \infty \div \infty+\infty$	$\infty-\infty$		ex +00000000 	No00002
	 			 	8동줕쨰 	జ్లిజ్లిల్లిక్రి	 	
	영83に多 		 	 				姑品8ッダロ
				 くなくくなくれくれくれくれくれ				
¢คロロロの	ロロロのロの	AOAAAA	AA，	AAAA听AAAAAAA	АAAAAA	AAAAAA	AAAAAA	APAPAA
				ตัตั\％	でぐくぐく		くざくせく号	
00＊＊＊		$\cdots \infty$	100000		－0\％＊00	N0\％1000	（10\％150	

Pendulum observations and reductions－Continued．

	发	厡		$\begin{aligned} & \text { gig } \\ & \text { \%it } \\ & \text { sit } \end{aligned}$	$\begin{aligned} & \text { s\% } \\ & \text { sic } \\ & \text { sit } \end{aligned}$		
	－	\％		 			
$\frac{8}{8}$$\frac{8}{8}$$\frac{8}{8}$$\frac{8}{4}$and	\％						
	这寝						
	鸾				ส్రజ్రส్రส్ర\＄్ర		¢
		 $000000000000000000<0000000$				훅혁옥육육육	
	～			\％	1111i	¢9\％ำจำ\％	
						－${ }_{\text {anumel }}^{++++++}$	＋－$-\infty+\infty$ +++++
					Bisigeezan		$\begin{array}{r} 8 \text { \&Rg } \\ 11111 \\ 1 \end{array}$
	$\stackrel{3}{4}$	 11111111111	$\infty 0000000 \infty$ 111111111	ormornos	111111	axa9as	\％masomo
				\％8855：9			\％タ®\％8\％
密安忽		 	 	$\begin{aligned} & \text { gis耳em } \\ & \text { Minimion } \end{aligned}$	$\begin{aligned} & \text { Bitatiow } \\ & \text { aisisixim } \end{aligned}$		
	雲					$\xrightarrow{\circ 0000000}$	
	京宫		Nocol－－	－			5
			 	ジッツำ8 ๙ivinicion			
离							
	$\frac{1}{8}$ 흘	のロローロロロロッロロロロ	aramazaza	AQPARA	คの\＆のロa	ambala	A
	音諒						
		－－＝aspmono	－ncomurnomb	－	－ 50	－¢00＋60	－ 0 conoo

	$\begin{aligned} & \text { 80\% } \\ & \text { sor } \\ & \text { sio } \end{aligned}$	$\begin{aligned} & \text { oyyy } \\ & \text { oso } \\ & \text { sion } \end{aligned}$	$\begin{aligned} & \text { Biob } \\ & \text { soic } \\ & \text { sit } \end{aligned}$		$\begin{aligned} & 8 \% \\ & \text { Kio } \\ & \text { sit } \end{aligned}$		sio
				운․․․․․․․․․․․			
	$\overrightarrow{11}=$	․․․․ $9:$					
きざきさきす 11111	11111		 11111111।			 1111T111！	
สีลสลี ＋＋＋＋t＋	ヨョロロェ゚ ＋＋＋＋＋＋	두화우 유유 ＋＋＋＋＋＋	 $++++++++7$	 ＋＋＋＋＋	 ＋＋＋＋＋	$+++++++++$	
R－nmenm		こ－00\％	－006－0．0000		coseoneme +++++	$+++++++++$	encole ines
	丁TTラ1		71111111	111111	111111	11111111	
mooson 11111	$\cos _{\cos }=$	rooxas an 111111	$\infty x \infty \times \infty \times \cos +\infty$ 111111111	$x 1=000 x=$ 1 1 1 1 1 1	－ハNNかく 111111	mrtocmanooso 111111111	
		둔훈훙 웅훙			Bativiz	ర్ర్ర్ర ：	
888	88\％®89\％8		¢0 ¢0．	－198888\％	485598	¢¢8．	8ํㅜํํํํ․
上ベN․ ミタ 	우ㅇㅜㅜ농뭉 	 	 	以 	థivisiop er	 	
		OONm			Sonimin	－	¢ninicio
\％ndefivim	－romom	7－my		－rapera	－Txocal	－10）	Moomm
か88\%ニタ 	 	 		 	 	\％\％ixinigioisisis	ल్లై
	뎡떠개여야 	뙬ํ 안 			 		さ
		くくくく \％\％		むg ๗ัส部言家家家家	กฟเสสสร 		
－	ニロムのニロ	ロロの	ロロの	คロロロの日	APAEAA	คคARARAの	ARARA
	Nom＊	－		いNのーロ0	いいがわ		\rightarrow－ 0 －100
						2ix	

Pendulum observations and reductions-Continued.

$$	$\begin{aligned} & \text { six̀ } \\ & 88 \\ & 80 \end{aligned}$	$\begin{aligned} & \text { 팅 } \\ & \text { 880 } \end{aligned}$	$\begin{aligned} & \text { Bicb } \\ & \text { Bicio } \\ & \text { Bit } \end{aligned}$	$\begin{aligned} & \text { giog } \\ & \text { Bio } \\ & \text { 8it } \end{aligned}$	$\begin{aligned} & \text { 5008 } \\ & \text { oic } \\ & \text { sit } \end{aligned}$			
צిజisioisisi	 	ถัํํํํ్ํ \％ixicisiois	 \％igisigisisi	 	ธisisisisisi	థicisisisisio	 	ธisisisisigi
Mo								
エニニニニス	웅ํ우여윽 11111	$\begin{aligned} & \text { ニニニニニコ } \\ & 111111 \end{aligned}$	$\begin{aligned} & \text { 9.0.9900 } \\ & 1111111 \end{aligned}$		 111111	$\begin{aligned} & \text { ㅋィッペーニ } \\ & \text { 11111 } \end{aligned}$	$\begin{aligned} & \text { ジロ゙ざざざ } \\ & \text { 11111 } \end{aligned}$	$\begin{aligned} & \text { 운99․․․ } \\ & 111111 \end{aligned}$
			\&		8888888			
 111117		$\begin{aligned} & \text { 을옹ㄹ을 } \\ & 7+7+7 \end{aligned}$						
0ッ＋emom			cocnorn－	－	ancoos	－	－	
＋＋＋＋1	$1++ \pm++$	＋＋＋＋1＋	＋＋11＋＋＋	$1++++t$	＋t＋t	＋t＋t＋t	$1++$	＋
	 ササテササ7		＋＋＋＋＋＋t	 11111	－タૂニニコーが $1+++++$	＋＋＋＋＋＋		 ＋＋＋＋＋＋
mi－000？	000000	000000a	ツenoxemom	－0000000	$\infty \times 00000 \infty$	mo융ㅇN	00	－
11111	111111	111	1111111	111	111111	111111	111111	1111
Zutu ex ex								
$88_{8} 9$	55.8885			28\％$x_{8}^{8} \times$	－¢ ¢ ¢ ¢ \％		58886	8888989\％
ํํํํํํํํ 이	 	 	 		둔․․＊ ざェ゙ェ゙ェ゙ェ்		No onioi	
	かんNイトの	$\stackrel{\infty}{-}$	ก๐			\bigcirc		－
		9－0，${ }_{\text {cost }}$	mamemor	9097109	OnNont	－00000 ${ }^{\circ}$	contmm	F－isum
 	มัก下： 	 	 	สivicivisi	おNㅠ유ㄲㅜㅜ ส（ix	สixisisiey		
 	더ㅇㅕㅕ올죽 	 	 	ลิస్జだल゙？ 	 	 	 	
응․․․․․․				∞ อᄋᄋ 	\％： สส์ถ์สร 	ココココココ	（：	
APAPAA	APARAA	APAAAA	APAAAAD	QQDOAA	QAARAA	Aロロロロロ	ORADAA	ARDAQ
				さぞくでき	くされてぎ号			
$\rightarrow 0$		－men	－0000＊＊00	$\cdots \infty$	－6m	$\rightarrow \times \infty$	－nめ＊＊＊	d

Pendulum observations and reductions－Continued．

	\cdots		 	 	 		
	\％						
	空易	สรสิลิสลิสิสิสิ 111111111	111111111	111111	コニコニゴニ 111111	111111111111	
		뿍 x 욱 1111111	111111111	ミニミニミミ		1711TラTアT1T1	
		$\begin{aligned} & 88888888888888 \\ & +++4+4+7 \end{aligned}$				 	
		$\begin{aligned} & 0=00 \rightarrow \infty-\infty \\ & 11+++++1+ \end{aligned}$	HCNCOCON $+++++++++$	On＝cima $1++11$	$++++++$	t＋t＋t＋＋t＋t＋	 $+++++t$
	$\begin{aligned} & \text { 憲发旨旨 } \\ & \hline \end{aligned}$	 ＋＋＋＋＋7＋＋＋	 		刃ivequ	11111111111	111111
	\％	$\infty \rightarrow 000000=$ 111111111	$\begin{array}{r} \text { =99898ニの } \\ 111111111 \end{array}$	$\begin{aligned} & ==00000 \\ & 111111 \end{aligned}$	$\begin{aligned} & =1 \leq 09000 \\ & 111111 \end{aligned}$	〒－0000000000000 1111111111：	osonoo 111111
¢⿹勹巳．				\％\＆\％ぁにす			
		 	 	8ㅈํㄷNN 	 	 	
	䨗		－oxocornomus	－ormomi	－ocomr	mraocororomtM	Sr－noe
	克馬	Ea－ONOMAnty			amagor		
		－\％	 	 	 	 	
		 	 	 	 	우내ำ 	
菏		 	ํㅜ ： 	๙ ：咀 สสణ Mx ㅁ 			
	容尶	ARAPAAAAR	afanmagat	ARAOAR	ARAEOA	ACAAAAARAAAA	QPQA
				さぐぐくぞき			
		－cm＋moncos	－－nmanembo	－ヘm－no			$\cdots \mathrm{mm}$

No. 74. Minneapolis, King. King., Marold D.
No. 75. Ioad 8. Dak. Harold D. King.
No. 78. Bismarck, N. Dak., Harold D. King.
No. 77. Hinsidalo, Mont., Harold D.
No. 78. Sand Polat, Idaho, Harold D. King.
No. 79. Boise, Idaho, narold D. King.
No. 84. Washington D. C., Bureain of Btandards, Willam H. Burger.
No. 80. Astorfa, Orog. Harold D. King.

Pendulum observations and reductions-Continued.

INVESTIGATIONS OF GRAVITY AND ISOSTASY．

E\％ cio cit	$\begin{aligned} & \text { Big } \\ & \text { ®icio } \\ & \text { situ } \end{aligned}$	$\begin{aligned} & \text { 亏े̣े } \\ & \text { gio } \\ & \text { git } \end{aligned}$		$\begin{aligned} & \text { 7ob } \\ & \text { Bisu } \end{aligned}$	\％iz \％\％ \％\％

ํㅠㅠテㅠ․․
耳ixisigisisi

11．1

 $t+t+t+t+t| || || || || | \mid t+t+t+t+t+t+t+t+t+t+t+t+t+t+t++t+t+t+t+$
 $111|1+1+1+++1+11+11+11+1+++1| 1|1 \quad 1111+1| 1|1| 1 \mid 11++11+1++1+1$
 $t+t+t+t+t 111111111111111111111111+t+++++t+++t+++++t+t+t++t+t+t+$
 11

58： 	 	 	 	に 	
かのかかのかいい。 	 	－mocro －ivinivino	かんNoo－60 	 	Nowoco －iューベベヘ
-en-omox	－ 	$00=\cos$	 	 	Non
			28＝양№？		¢98588재
\％\％\％			\％\％¢ ¢ \％\％		Femimizu
	\％8598\％		ธ¢		\＆
					స్లM M Mx

Pendulum observations and reductions-Continued.

Btation and observer	8\%.ng	$\begin{aligned} & \text { Pen } \\ & \text { du- } \\ & \text { lum } \end{aligned}$	Pos	Date	Coincidence interval		Total arc		$\begin{array}{\|l\|l\|} \hline \text { Tem- } \\ \text { perar } \\ \text { ture } \end{array}$	$\begin{array}{\|l} \text { Pres- } \\ \text { sur } \end{array}$	Pariod uncorrected		Correetions (seventh decimal place)						1 'eriol enrrected				Moen
																Ra							
					$\begin{aligned} & \text { Chro- } \\ & \text { nome } \\ & \text { ter No. } \\ & 102 \alpha 3 \end{aligned}$	$\begin{array}{\|c} \text { Chro- } \\ \text { nome } \\ \text { ter No. } \\ \hline 1841 \end{array}$	${ }_{\text {rinl }}^{\text {y }}$	Final			$\begin{aligned} & \text { Chronom } \\ & \text { eter No. } \\ & 1823 \end{aligned}$	Chronom- eter No. 1841	Arc	$\begin{aligned} & \text { Tem- } \\ & \text { pera- } \\ & \text { ture } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Pros- } \\ & \text { sure } \end{aligned}\right.$	Chro- nom- eter No. 1823		Flex	$\begin{gathered} \text { Chronom- } \\ \text { eter No. } \\ 1823 \end{gathered}$	$\begin{aligned} & \text { eter No. } \\ & \mathbf{1 8 4 1} \end{aligned}$	Mean		
o. 96. Mena, Ark., Haroid D. King.	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathbf{A 5} \\ & \mathbf{A}^{5} \\ & \mathbf{A 4} \\ & \mathbf{A} 4 \\ & \mathbf{A B} \\ & \mathbf{A 6} \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { D } \end{aligned}$		310.32310.42254.1425.1532532.16322.63	$\begin{gathered} 8.8 \\ 314.22 \\ 331.12 \\ 256.83 \\ 256.81 \\ 327.66 \\ 326.34 \end{gathered}$	$m m$.5.25.65.05.05.15.25.1	$\left\lvert\, \begin{gathered} m m . \\ 1.9 \\ 2.1 \\ 1.9 \\ 1.8 \\ 1.8 \\ 2.8 \end{gathered}\right.$		$\begin{gathered} \text { rum } \\ 65 \\ 60 \\ 69 \\ 59 \\ 64 \\ 64 \\ 59 \end{gathered}$			-11-12$=10$$=10$$=\quad 9$-10	$\begin{aligned} & -45 \\ & =47 \\ & =68 \\ & -60 \\ & -85 \\ & -74 \end{aligned}$	$\begin{aligned} & -\quad 2 \\ & +2 \\ & \pm \\ & \pm \\ & \hline \\ & \hline \\ & \hline \end{aligned}$	+38+38+38+38+38+	$\begin{aligned} & +126 \\ & +126 \\ & +126 \\ & +126 \\ & +126 \\ & +126 \end{aligned}$	$\begin{aligned} & -11 \\ & -11 \\ & -11 \\ & =11 \\ & =11 \\ & -11 \end{aligned}$				Dynes 979.558 978. 546 979.548 979.547 979.547	$\begin{aligned} & \text { Dynes } \\ & 079.551 \\ & \pm 0.001 \end{aligned}$
									15. 12														
									16.:2														
No. 97. Nacogdoches, Kıng. Ting. Harold D.		$\begin{aligned} & \mathbf{A}^{6} \\ & \text { A6 } \\ & \text { A5 } \\ & \text { A5 } \\ & \text { A4 } \end{aligned}$	$\begin{aligned} & \text { D } \\ & \mathbf{D} \end{aligned}$	Apr. 4-5 Apr. 5. Apr. 5. Apr. 5 -6. Apr. 6. Apr. 6.	$\begin{aligned} & 307.12 .12 \\ & 305.13 \\ & 29.55 \\ & 29.150 .16 \\ & 244.50 \\ & 244.77 \end{aligned}$	$\begin{aligned} & 310.72 \\ & 311.62 \\ & 293.36 \\ & 298 . .60 \\ & 247.21 \\ & 246.77 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 5.2 \\ & 5.0 \\ & 5.1 \\ & 5.2 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.9 \\ & 1.9 \\ & 1.5 \\ & 2.0 \end{aligned}$	$\begin{array}{\|l\|} 17.98 \\ 17.96 \\ 1: 74 \\ 15.08 \\ 15.06 \\ 17.90 \end{array}$	$\begin{aligned} & 62 \\ & 62 \\ & 61 \\ & 59 \\ & 64 \\ & 57 \end{aligned}$			$\begin{aligned} &-9 \\ &-11 \\ &-9 \\ & \hline 10 \\ & \hline 10 \\ &-11 \end{aligned}$		$\left\{\begin{array}{l} +2 \\ + \\ + \\ + \\ + \\ + \\ 0 \\ + \\ + \end{array}\right.$		+118+118+118+118+118+118	-10$=10$$=10$$=10$-10-10		.5008035.5000010.500381.500381.501010104.5010131		$\begin{aligned} & 979.420 .420 \\ & 999.432 \\ & 979.422 \\ & 979.425 \\ & 979.420 \\ & 979.420 \end{aligned}$	$\begin{aligned} & 979.423 \\ & \pm 0.0001 \end{aligned}$
No. 98. Alpine, Tex., Harold D. King.			$\begin{aligned} & \mathrm{D} \\ & \mathbf{D} \\ & \mathbf{D} \\ & \mathbf{D} \\ & \mathbf{D} \end{aligned}$	Apr. 10-11. Apr. 11 Apr. 11 A pr. $11-12$ Λ pr. 12 Apr. 12. \qquad		$\begin{aligned} & 272.36 \\ & 222.40 \\ & 262.70 \\ & 261.92 \\ & 221.72 \\ & 221.14 \\ & 21.44 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 5.0 \\ & 4.5 \\ & 5.1 \\ & 5.0 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & 1.8 \\ & 2.0 \\ & 1.8 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 17.02 \\ & 17.68 \\ & 16.46 \\ & 17.03 \\ & 17.06 \\ & 17.17 \\ & 17.17 \end{aligned}$	$\begin{aligned} & 61 \\ & 57 \\ & 66 \\ & 60 \\ & 64 \\ & 61 \end{aligned}$.5009248.5009229.5003294.5003991.5011328.5011352		$\begin{array}{r} \quad 8 \\ \hline \quad 10 \\ \hline 88 \\ \hline 10 \\ =10 \end{array}$	-85-70$=82$$=85$-86-91		$\begin{aligned} & \text { Z } 9 \\ & \hline 9 \\ & \hline 9 \\ & \hline \\ & \hline \end{aligned}$	20+20+20+20+20+20	$\left\|\begin{array}{ll} - & 8 \\ \hline & 8 \\ \hline & 8 \\ \hline & 8 \\ \hline & 8 \end{array}\right\|$.5009141 .5099138 .5003485 .5049483 .5012126 .5011236	.5009118.5099133.509555.500481.5012128.5011228			978.090± 0.001
No. 99. Farwell, Tex., Harold D. King.			$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \\ & \mathrm{D} \\ & \mathbf{D} \\ & \mathbf{D} \\ & \mathbf{D} \\ & \hline \end{aligned}$	Apr. 15-16.. Apr. 16. Apr. 16. Apr. 16-17. Apr. 17. Apr. 17.....	$\begin{aligned} & 303.77 \\ & 303.58 \\ & 201.54 \\ & 2.0 .60 \\ & 21.60 \\ & 211.0 \\ & 21.04 \end{aligned}$	$\begin{aligned} & 305.02 \\ & 30.01 \\ & 390.80 \\ & 291.90 \\ & 21.98 \\ & 21212 \\ & 241.57 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.8 \\ & 5.0 \\ & 4.8 \\ & 5.0 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.8 \\ & 1.9 \\ & 1.9 \\ & 1.9 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 12.72 \\ & 12.70 \\ & 12.96 \\ & 13.11 \\ & 13.15 \\ & 13.30 \end{aligned}$	676170656560			$\begin{array}{r} -9 \\ -\quad 9 \\ -10 \\ -10 \\ -\quad 9 \\ -\quad 9 \end{array}$	$\begin{array}{\|l} +98 \\ +96 \\ +85 \\ + \\ +79 \\ + \\ +78 \\ +71 \end{array}$	$\begin{array}{r} 4 \\ \left.\begin{array}{r} 4 \\ 7 \\ 2 \\ 2 \\ -3 \end{array} \right\rvert\, \end{array}$	$\begin{array}{r} +24 \\ +24 \\ +24 \\ +21 \\ +24 \\ +24 \end{array}$	60+60+60+60+60+60	$\begin{aligned} & -8 \\ & \hline \\ & \hline \\ & \hline 8 \\ & \hline \\ & \hline \end{aligned}$				$\begin{aligned} & 979.299 \\ & 979.296 \\ & 9990.2013 \\ & 999.2057 \\ & 979.2 \times 7 \\ & 979.281 \end{aligned}$	979.292± 0.002
$\begin{aligned} & \text { No. 100. Guymon, } \\ & \text { Okla., Harold D. } \\ & \text { King. } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 8 \\ & 9 \\ & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$	A4A4$A 5$$A 5$$A$$A 6$$A 6$$A 6$$A B$$A B$$A 5$$A 5$$A 4$$A 4$$A 4$$A 4$$A 4$$A 4$	\mathbf{D} \mathbf{D}	Apr. 21-22. Apr. 22.. Apr. 22. Apr. 23. A pr. 23. Apr. 23-24 Apr. 24. Apr. Apr. 24-25. Apr. 25. Apr. $25 . .$. Apr. $25-26$. Apr. 23. Apr. 28.			5.05.05.25.24.44.95.35.15.15.15.14.84.75.35.04.94	1.7 1.9 1.7 1.7 1.8 1.8 11.8 1.7 1.8 1.8 1.8 1.9 1.8	19.0119.0819.5519.6719.5919.2419.0818.4219.1319.2419.1419.2919.3019.4319.09	6262656368686160856359646161626858			$\begin{aligned} & \mathbf{Z} \\ & \mathbf{Z} \\ & \mathbf{1 1} \\ & =10 \\ & \hline \\ & \hline \end{aligned}$	-169-171-191-196-192-197-171-171-164-173-177-173-180-180-186-209	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 3 \\ & 1 \\ & 10 \\ & 1 \\ & 1 \\ & 5 \\ & 0 \\ & 4 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	17$=17$1717171717$=17$17171717171717171717	+48+48+48+48+48+48+48+18+48+48+18+18+48+48+48	-10$=10$$=10$$=10$$=10$1010101010101010101010					979.570± 0.001
No. 101. Helenwood, Tenn., T. L.W arner.	223456	$\begin{aligned} & \text { A6 } \\ & \hline \text { AB } \\ & \text { AB } \end{aligned}$	$\begin{array}{\|l} \mathbf{D} \\ \mathbf{D} \\ \mathbf{D} \\ \mathbf{D} \\ \mathbf{D} \\ \mathbf{D} \end{array}$	May 10-11. May 11 May 11 May 11-12. May May 12.	$\begin{aligned} & 315.12 \\ & 317.54 \\ & 32.58 \\ & 327.82 \\ & 276.82 \\ & 266.81 \\ & 265.26 \end{aligned}$	$\begin{aligned} & 319.36 \\ & 35.28 \\ & 330.28 \\ & 331.46 \\ & 231.46 \\ & 268.66 \\ & 287.25 \end{aligned}$	$\left\|\begin{array}{l} 5.0 \\ 4.8 \\ 4.9 \\ 5.0 \\ 5.0 \\ 4.9 \end{array}\right\|$		$\begin{aligned} & 19.69 \\ & 18.67 \\ & 19.88 \\ & 19.66 \\ & 19.66 \\ & 19.85 \\ & 19.85 \end{aligned}$	$\begin{aligned} & 61 \\ & 61 \\ & 63 \\ & 69 \\ & 61 \\ & 69 \end{aligned}$			8	-197-155-205-195-173-207		$\begin{array}{r} +18 \\ +19 \\ +19 \\ +19 \\ +19 \\ +19 \end{array}$	$\begin{aligned} & +99 \\ & +99 . \\ & +994 \\ & +994 \\ & +990 \end{aligned}$	$\begin{array}{ll} = & 11 \\ = & 11 \\ = & 11 \\ = & 11 \\ = & 11 \end{array}$		$.50070 \% 2$.5007070.5007.5072.500739.500 .228.5009244	.5007059.5007061.50744.507744$.500: 223$$.50092+2$	979.801979.800979.785979.785779787979.786	$\begin{aligned} & 979.785 \\ & \pm 0.006 \end{aligned}$

	$\begin{aligned} & \text { \%eg } \\ & \text { gio } \\ & \text { sit } \end{aligned}$				$\begin{aligned} & \text { By } \\ & \text { Bex } \\ & \text { Bit } \end{aligned}$		
					T	정응	
	¢ ¢ixisisugisi						8
			Riarotic				
111111111		－	N				
	1।1।।	1	111111	111111	111111	111111111	1111111111
 ＋ナ＋＋＋＋＋＋＋		๕ఇణฐణ๕ t＋t＋＋t	 		$+++t+t$	めますたススススボ $t+t+t++++$	$++++++++++++$
00000000000$1111111111$	$\infty \times \infty \times$ \％สสิ	－ 000000000	$=$		\％\＆	ハ－ヘmmmめmை	－
	＋＋＋＋＋＋	111111	＋＋＋＋＋＋＋	＋＋＋＋＋＋	111111	＋＋＋＋t＋＋＋＋	1111111111
$t+t+t++t+$	c－rmenoos	on	nunonom	－190\％mom	－ 0 oosm	on－0000000	－
	＋＋1＋＋＋	＋	＋t＋＋t＋	＋＋ $1++1$	＋＋＋＋＋	＋t＋t＋t＋t＋	＋ $1++++$
 1111111		111111	 111111？	Noxper 1111	© ista		 117111111111
$\infty<\infty \infty 0=0$－ 111111111	二ニロoํ）	－ロニ		－コロ00	000000		
	111111	11111	1111111	111111	111111	111111111	111111111
				\％85\％\％®		4	5品
 	すmorep：			\sim_{0}^{∞}	98883		
		बंलंबंबे					
		∞	Fi	000000	00000000 －i－iciniテi	\cdots	
－－－－Mom－0	的隹的的	－	Numocol	NNCNOOM		－	
 	${ }_{\sim}^{*}$		\％${ }_{\text {dod }}$		\％	\＄80\％M \％\％\％	
	व्लं	탰	\％¢kekidex ex		¢ ¢iviso		
－		¢8		\％		すWrus	
		¢mynimimis					
	 	en					
ARAAAAAAA	AFAAAAA	Aacaat	AAAAAA	afarara	ARAAAA	ARAPAAAAA	ARA
		42ッロッフ	ざざそれでく	くでぐらくて	隹くでぎさ		4
	20	－cハッーロー	¢omma	－	\rightarrow ーがいかも	－	

Pondulum observations and reductions－Continued．

			$\begin{aligned} & 8 \overline{3} \\ & 80 \\ & 80 \end{aligned}$				$\begin{aligned} & 388 \\ & 88 \\ & 8+1 \end{aligned}$	
	\cdots	둠 	 	ッ路スヘ응 \＆ 		cigoos 6－5ㅇㅇㅇ	 が品がか よからずす。	
Periond burnested	등							
Corrections (saventh decimal place)		$111111 \mid 11$	ษనNన్ูึన ｜1｜1｜				$\begin{aligned} & \text { NNEN } \\ & 111111 \end{aligned}$	cencone 111111
	是	111111111	$+t+t+t$	50 © $+t+t++$	 $t+t+t+$			
		｜11｜1｜｜1	$\infty \infty \infty$ $+t+t+1$	111111	츠제ニッに ｜｜｜｜｜	－00000	후쿸ㄱ 111111	5ージロージロージロ 111111
		 $t+t+t+t+$	ल ow thon＝4 $1+t+t+$	いッいかもッ $1+t+t+$	$\begin{aligned} & 000000 \\ & t+t+t+ \end{aligned}$	$+t+t+t$	$\begin{aligned} & \text { con 000000 } \\ & t+t+t+ \\ & \hline \end{aligned}$	$00 \times 10 \times 0=\infty$ $+t+t+t$
		$++11+1+4$		111111	№Nㅗ오옹	$\begin{aligned} & \text { x2 } 2 \text { 200 } \\ & t+t+t+1 \end{aligned}$		$\begin{array}{r} -8888 \\ +1111 \end{array}$
	2	잉ํㅇ․․․․․․․․ 111111111	111111	$\operatorname{coc} \infty \cos ^{-1}$ 111111	$\begin{aligned} & 0=-9=0 \\ & 1\|1\| 1 \mid \end{aligned}$	111111		$\begin{aligned} & \infty=9=0= \\ & 111111 \end{aligned}$
7 8 8 8								
			 5 5\％8 					
㐌莡		E			99809098985		¢0888\％	8－9\％9\％
$\begin{aligned} & \text { 最思量 } \\ & \text { E } \end{aligned}$		ぐカニット8 		웅훌ㅇㅇ영 	No			
			008000	がわNNO －iनiलiनiन	Nasocos 	$-\infty \infty \infty$ カームージッid	$\begin{aligned} & \infty \infty \infty \infty \infty \\ & \sim \min +\infty \end{aligned}$	Noopor
	句哥		－moonc 	$0000-9$ 	 	O－60000 	○m＊emmem 	－ーがれたい ベぶ
		 	শ투옹筑以荡	§isid 	 	క゙స8 సేल్లన్లీ	 ल్ల్లल ल゙	
		 	 	 	ま゙ 	 	－ ら灾家 ๗ึ ๗゙	
$\begin{aligned} & 8 \\ & \hline 1 \\ & \hline 1 \end{aligned}$		 くくくくくくく《く		ผ 8 กสัญำร くなくく《＜				
	$\frac{1}{8} 9$		ロニロのロロ	ACロニロロ	คADADA	AAAADA	АААААА	AAPAAA
	愛它目			－¢ ¢ ¢ ¢ ¢ ¢		¢くくくぐく		
	$\begin{aligned} & 0 \\ & 50 \\ & 52 \\ & 0 \end{aligned}$	－weromincoro	－ccominco		－cem＋ine			
	Atation and obearver							

 $t+t+t+t+t+t+t+t+t+t+t+t+t+t+\quad+t 1+t+t+t+t+t+t+t+t+t+t+t++11+t+t+1$

 1111111111111111111111111！11

－ลํㅜ떙ㅇ 	 	 		 	
000000∞ 	クininivind Nivi	－ $0000-100000$ 	osomoso riminimi	$\infty<\infty 0 \infty$ nisiviテi＝゙	
－ altuicis		mo－NnNOm 	Oのバッのの 	On－men	OnOONONMOOTNHMNOM－NOMOOMHOOHNOG
ำ．	 	 	 		
 	To 00 － 			 	
OAPAQA	คニロのニAADA	ARACAAAA	คニロニニロ	のロロローの	AFAAAAAAAFAAAAAA AAAAAA QAAAAAAAA
$\cdots+\infty$	Onmanome	－6000	（000 +00	¢0\％	

No．117．Guernsey． w ya，T．L．Warner．
No．118．Plorre，B． Dak．，T．L．Wemer．
No．119．Fort Dodee， Iowa，T．L．Warner．
No．120．Kelthishurg， II．，T．L．Warner．
No．121．Grand Hap － Tds，Mis Warner．
No．122．Angola，Ind．， T．L．Warnor．
No．128．Albany，N． Y．，T．L．Warner．
No．124．Port Jervis， N．Y．，T．L．Warnar．

Pendulum observations and reductions－Continued．

	$\begin{aligned} & \text { है } \\ & \text { हैy } \end{aligned}$	\％		
	－	츠N		
	麋			
	苼边	11111111111111111111111111111	ニニニニニニニニニ 111111111	ニニニニニニコ 1111111
		$++11+11+++11+1+1++1++$＋ $1+++$	＋＋＋＋＋＋＋＋＋	$\mathfrak{y s}$
			 11111111	
	4	 11111111111111111111111111111	かの 111111111	 111111
衰号官		s		
		 	 	ม่สุส่ส่ส่
	唇		Noboroox	－－M－000
	它葍		Frmanmmer	
	bo. 혛	 		
发		 		ฺสั่（ณ่ สสสสํสํ
衰家			APARAADAR	AAPARAA
			－ヘm゙nomoon	－やめが

		$\begin{aligned} & \text { BeCb } \\ & \text { Bion } \end{aligned}$		$\begin{aligned} & \text { rimg } \\ & \text { Bo } \\ & \text { 8iot } \end{aligned}$		
	 	 	 	耳isisisisisi	 	รisioisixisis
Be:						
こニここニ	00000000000000 00000000	000	∞	manmma	0	00000
11111	11111111111111111	111111	111111	111111	111111	11111
	－1111111111111 1T111			$\begin{aligned} & 882080 \\ & 11111 \\ & \hline 10 \end{aligned}$		
 $+++++$	 	気気気めも日月 111111	초츄NNํํํํ け丁T	1111	11111	
－9゙コニッ		－＊～Nㄲํํㅇ	－900～00	－miser	－m＠om－	Oonsoonk
$1++++$	$t+t++t+t+t+t+t++t++t+$	＋1＋t＋t	＋t＋t＋t	＋＋＋＋1＋	＋＋1＋11	＋1111＋
		11111			111111	
ニーロ뭉 11111	1111111111111111111	－＝ロ이옹 11111	ㅚㅚㅇㅛ000 111111	Nosanos 111111	－nmom 111111	111111
	4	888ํํํํํํ％			\＄¢8\％988	
				8 808\％ำ\％		누꾸ํํㅜ％
－09－00		$20 \infty 00000$ －ब～ー～～～～	m＠ 	－minuor	On＝00000	－0000000
		monecram	annore			－0\％
－0ํㅜํㅜㄴ 	 －	B표N： 	 	 	 ఫ్లిర్లిల్లు	8889： \％Mivikisis
あ\％\％\％\％ 	 	Nㅜㅇ내냉ㅇㅇ 	 ल్ల్లどNか్ల	ళ్లిల్లిలిల్లి్ల	๗\％\＆\％ ళ్mizessier	
ロロロニの	ARAニARAAFAAAAAA a ARAARA	ARAAAA	AAAPAA	ARARAAA	aparal	anaraa
¢ํํํํ）						
－09ワご		ーツツ－ヵゅ		－meterno		Mパーロー

Pendulum observations and reductions-Continued.

 11

 $t 1+111+t+t+t+t+t+t+t+t+t+t+t+t+11111+111111+t+t+t+t+t+t 111111111$

 111

		 	$\begin{aligned} & 8988 \\ & =1020 \end{aligned}$			
	－oramomom	¢norornom	ロ0\％	ง⿵冂ง⿵冂	$0 \times$	monemornmar
－	Cusisioiof	\％－0，	\％	－9－mor	\％	－
97\％${ }^{\text {a }}$ 8＝	2naxinuex		88	8デsumioux		
			\％\％ixisixisionixis	－		
\％\％	98		श®\％	188	\％\％\％％	
			รֹx่s．		\％\％\％ixis	

	 	 		 	$\lll \lll \lll 1$	दयदयदययदयद
のロロの日a	AAAARAAAA	ААAAAAAAA	AAAAAAAAA	AのAAAAAAA	AAAAAAAAA	AAAAAAAAAAAA
12×2006 	0100000000 	 	 	 	 	
－cestrue			Mevemirencos		－averumencoos	

Pendulum observations and reductions-Continued.

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{8tation and observer} \& \multirow[t]{2}{*}{\[
\begin{array}{|c}
8 \text { 8wing } \\
\text { No. }
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\left|\begin{array}{c}
P \text { en- } \\
\text { duu } \\
\text { dum }
\end{array}\right|
\]} \& \multirow[t]{2}{*}{\[
\left|\begin{array}{|c|}
\hline \text { Posi- } \\
\text { tion }
\end{array}\right|
\]} \& \multirow[t]{2}{*}{Date} \& \multicolumn{2}{|l|}{Coincidence interval} \& \multicolumn{2}{|l|}{Total arc} \& \multirow[t]{2}{*}{\[
\begin{array}{|l|l|l|}
\text { Tem- } \\
\text { pera- } \\
\text { ture }
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
\& \text { Pres- } \\
\& \text { sure }
\end{aligned}\right.
\]} \& \multicolumn{2}{|l|}{Period uncorrected} \& \multicolumn{5}{|l|}{Corrections (seventh decimal place)} \& \multicolumn{3}{|l|}{Period correctel} \& \multirow[t]{2}{*}{-} \& \multirow[t]{2}{*}{Moang} \\
\hline \& \& \& \& \& \[
\begin{aligned}
\& \text { Chro- } \\
\& \text { nome } \\
\& \text { ter No. } \\
\& 1823
\end{aligned}
\] \& Chro-nome1841 \& \[
\mathrm{mil}_{\text {tal }}
\] \& Final \& \& \& \[
\begin{aligned}
\& \text { Caronom- } \\
\& \text { eter } \\
\& 182.0
\end{aligned}
\] \& \[
\begin{array}{|c|}
\text { Chronom- } \\
\text { eter No. } \\
1841
\end{array}
\] \& Are \& \[
\begin{array}{|l}
\text { Tem. } \\
\text { pera- } \\
\text { ture }
\end{array}
\] \& \[
\begin{aligned}
\& \text { Pras- } \\
\& \text { sure }
\end{aligned}
\] \& \& \[
\begin{gathered}
\text { Flex- } \\
\text { ure }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Chronom- } \\
\& \text { eter No. } \\
\& 1823
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Chronom- } \\
\& \text { eter No. } \\
\& 1841
\end{aligned}
\] \& Mean \& \& \\
\hline \[
\begin{aligned}
\& \text { No. 153. Cloveland, } \\
\& \text { Tenn. } \begin{array}{l}
\text { John D. } \\
\text { Powell. }
\end{array}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& \frac{1}{2} \\
\& 3 \\
\& 1 \\
\& 8 \\
\& 6 \\
\& 7 \\
\& 8
\end{aligned}
\] \& B5
85
85
86
86
86
86
\(B 6\)
\(B 6\)
\(B 6\) \& \[
\begin{aligned}
\& \text { D } \\
\& \mathbf{D} \\
\& \mathbf{D}
\end{aligned}
\] \& \& \& \& mm.
4.3
6.4
5.2
4.8
4.1
4.5
6.0
4.1
6.0
6.3
6.3 \& \(m m .1\)
1.1
1.6
2.3
1.1
1.3
2.5
1.1
1.2
2.3 \& \begin{tabular}{l}
\(\circ \mathrm{C}\) \\
21.00 \\
20.52 \\
20.40 \\
20.92 \\
21.32 \\
21.40 \\
21.48 \\
21.70 \\
21.85 \\
\hline
\end{tabular} \& \[
\begin{gathered}
m m \\
68 \\
82 \\
77 \\
88 \\
74 \\
82 \\
63 \\
76 \\
88
\end{gathered}
\] \& \& \& - \(\begin{array}{r}\text { 12 } \\ \hline 12 \\ \hline 12 \\ \hline \\ \hline\end{array}\) \& -251
-231
-226
-248
-285
-288
-271
-281
-287 \& - 16 \& \begin{tabular}{l|l}
-225 \& -179 \\
-225 \& -179 \\
-225 \& -179 \\
-223 \& -176 \\
-223 \& -176 \\
223 \& -176 \\
-217 \& -181 \\
-217 \& -181 \\
-217 \& -181
\end{tabular} \& \begin{tabular}{l}
\hline \\
\hline \\
\hline 8 \\
\hline
\end{tabular} \& 0.5008403
.5008402
.500431
.5002217
.5005212
.5008178
.508225
.5008204
.5008175 \& \& \& \& Dynes

979.619
± 0.001

\hline \& 1
2
8
3
10
11
12
4
5
6
6
7
8
8 \& \& D
D
D
D
D
D
D
D
D
D
D
D \& \& \& 297.98
297.02
297.02
295.52
295.16
294.08
290.49
289.58
288.86
289.37
289.00

288.10 \& | 4.5 |
| :--- |
| 68.4 |
| 6.4 |
| 68 |
| 4.7 |
| 4.9 |
| 6.4 |
| 6.0 |
| 7.0 |
| 6.0 |
| 5.8 |
| 5.0 |
| | \& \[

$$
\begin{aligned}
& 1.1 \\
& 1.9 \\
& 2.7 \\
& 2.5 \\
& 1.1 \\
& 1.8 \\
& 1.8 \\
& 2.9 \\
& 1.7 \\
& 1.8 \\
& 2.1
\end{aligned}
$$
\] \& 18.88

18.80
18.95
20.42
20.45
20.52
19.28
19.70
19.78
20.88
20.22
20.32

20.32 \& $$
\begin{aligned}
& 68 \\
& 92 \\
& 72 \\
& 72 \\
& 42 \\
& 69 \\
& 91 \\
& 58 \\
& 78 \\
& 74 \\
& 67 \\
& 66 \\
& 85
\end{aligned}
$$ \& \& \& - $\begin{array}{r}6 \\ 15 \\ 18 \\ 18 \\ 6 \\ 6 \\ 9 \\ 14 \\ 12 \\ 20 \\ 12 \\ 12\end{array}$ \& -163

-163
-166
-227
-228
-231
-179
-197
-205
-205
-212
-223

-223 \& \begin{tabular}{l}
-28

-28

\hline+21

\hline

\hline

 \&

-201 \& -187

-201 \& 187

-201 \& 187

-199 \& 194

-199 \& 194

-199 \& -194

-201 \& 187

-201 \& 187

-201 \& 187

-215 \& -196

-215 \& 196

-215 \& -196

 \&

10

$=10$

$=10$

$=10$

$=10$

$=10$

$=10$

10

10

\hline 10

$=10$

-10

-10
\end{tabular} \& \& \& \& \& 979.712

± 0.000

\hline No. 16B. Bristol ${ }^{\text {Va., }}$ John D. Powell \& \[
$$
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 1 \\
& 1 \\
& 6 \\
& 7 \\
& 8 \\
& 9
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { B6 } \\
& 86 \\
& 86 \\
& 85 \\
& 85 \\
& 85 \\
& 85 \\
& 85 \\
& B 5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { D } \\
& \text { D }
\end{aligned}
$$

\] \& \& \& \& \[

$$
\begin{aligned}
& 5.2 \\
& 8.0 \\
& 5.3 \\
& 5.2 \\
& 5.0 \\
& 5.0 \\
& 8.8 \\
& \hline .8 \\
& 4.5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.5 \\
& \begin{array}{l}
1.7 \\
2.3 \\
1.8 \\
1.8 \\
2.3 \\
2.4 \\
1.0 \\
2.1
\end{array}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 19.18 \\
& 19.32 \\
& 19.39 \\
& 19.58 \\
& 19.90 \\
& 19.95 \\
& 20.18 \\
& 20.45 \\
& 20.65
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 68 \\
& 80 \\
& 72 \\
& 64 \\
& 55 \\
& 64 \\
& 64 \\
& \hline 76 \\
& 70
\end{aligned}
$$
\] \& \& \& \& -175

-181
-183
-192
-205
-207
-217
-228
-237

- \& -15
-15
-7
+0
+

0
0
0

-11 \& | -227 | 1 |
| :--- | :--- |
| -207 | |
| -227 | |
| -227 | -207 |
| -220 | |
| -200 | -209 |
| -200 | -209 |
| -206 | -198 |
| -2096 | -198 |
| -206 | -198 |
| -208 | | \& \& \& \& \& \& 979.712

± 0.001

\hline Washington, D. C,
Coast and Geodetio
Suarve oflice, John
D. Powell. \& 1
2
3
3
10
11
12
4
4
5
6
7
8
8

8 \& $$
\begin{aligned}
& \text { B4 } \\
& 84 \\
& 84 \\
& 85 \\
& 85 \\
& 85 \\
& 86 \\
& 86 \\
& 86
\end{aligned}
$$ \& D

D
D
D
D
D
D
D
D
D

D \& | June 18. |
| :--- |
| June 18-19.. |
| June 19. |
| July 1 . |
| July 1-2. |
| July $2 .$. |
| June 29-30 |
| June 30 |
| June 30 |
| June 30-Juiy 1 | \& \& 284.10

284.98
284.94
286.14
286.20
285.50
328.18
328.21
327.62
336.12
335.50

334.87 \& $$
\begin{aligned}
& 5.1 \\
& 4.7 \\
& 4.8 \\
& 54.9 \\
& 4.7 \\
& 5.5 \\
& 5.0 \\
& 4.2 \\
& 4.7 \\
& 6.1 \\
& 5.4
\end{aligned}
$$ \& \& 23.05

22.55
22.22
21.52
21.75
21.88
21.40
20.48
20.88
21.14
21.14
21.30

21.38 \& \& \& \& | 10 |
| ---: |
| $=19$ |
| $=9$ |
| $=11$ |
| $=7$ |
| $=12$ |
| $=10$ |
| 8 |
| 7 |
| 13 |
| -10 | \& -337

-316
-302
-233
-2×3
-2×3
-2×36
-226
-234
-243
-277
-264

-267 \& \[
$$
\begin{aligned}
& +16 \\
& +12 \\
& +10 \\
& \pm 10 \\
& 1 \\
& \hline 11 \\
& - \\
& \hline \\
& \hline
\end{aligned}
$$

\] \& | -215 | -180 |
| :--- | :--- |
| -215 | -180 |
| -215 | -180 |
| -215 | -165 |
| -2.5 | -165 |
| -2.5 | -16.5 |
| -217 | -171 |
| -217 | -171 |
| -217 | -171 |
| -213 | -168 |
| -213 | -168 |
| -213 | -168 | \& \& \& \& \& \&

\hline
\end{tabular}

$\begin{aligned} & \text { Bis } \\ & \text { Sis } \\ & \text { Sis } \end{aligned}$	$\begin{aligned} & \text { gis } \\ & 80 \\ & 80 \\ & 80 \end{aligned}$					
	 	玉isisisisisisisisisisis	 	 		
					ర్ర్రీ	
111111111		\qquad		\qquad	osiciocioncoson 111111111	$\infty 0000 \infty 00000000$ 111111111
	フラ171111		111111111		Monem en en en en	11111111
	111111111	 111111111111	111111111	111111111	111111111	111111111
$+1+1++1$	＋t＋＋＋＋t＋＋	$++++++++++++$	－manconnonn $+++++++++$	00000000000 $+++++++++$	$+t++t+111$	－ ＋＋＋＋＋＋111
$\begin{aligned} & 0800050 \% \\ & 11111111 \end{aligned}$	11111111	1111111111	 111111111	111111111	キ～プ 1｜1111＋＋＋	$++++++111$
！11111111	111111111	11111111111	111111111	11111111	111111111	111111111
		궁운 				
			－9808809090\％			\％ 4
 	థix	 	¢ 	 	 	
$00 \% 000 \mathrm{NHTO}$ 	ーローがたかッに 	 	tronomicom 	N－HONONTO 		
 	 	 	0000 Wncmo 	Noone misuce 	000 antoomendoum 	FnNocer चixusco
		ష్ల M	 	 	 	
	ભ 	㻤べ ल．	 	 	 	
			：：\％：\％ \＆\％ そそそそそそぞ			 そそरそそそれそそ
АニАААААニА	AニAAADARA	ARARAADAAAAA	AAAAAAAAA	AAPAAAAAA	AAAAAAAAA	afanafana
		－		－TEOST100N－		
		No．179．Oconto，Wis．， John D．Powell．				

Pendulum observations and reductions--Continued.

 11

 $t+t+t+t+t 111111111+t+1+t+t+t+t+11++11111+t+t+1+t+111+11+11+t+11+1$

 111

 	 	ถิธ	かవ	 	 షัํํํํํํํํํำ	
N00000070 	－iテinininininainiol	 	 	 	 	
－1－0xomemN 	ックை－Woccocos 	 	－ 	 	 	 พี่ เค่ ฟั่ เค่ เค่ แร์ เย่ เค๋ เค่
	 			 	18N 	
	 	 	 	 	 	 ざ
	（20 © ：o 		 －00タそイスぞそ		808080080	
АААニニニニA	AAAA，	AAAAAAAAA	คのAのAAAAA	apanamana	のAADAAARA	ААのAAAAAA
	 	 		ゅめッツツゅッツツ	 	
		－50\％				

Pendulum observations and reductions-Continued.

쿠양
siod

骨
辡
\＄8

タッきミコロ

ฯ

Washhngton， Cosst and C Survey 0 mee, C ．L． Garner．
Ne．125．Atlantio City N．J．，C．L．Garner．
No．120．Bridgehamp： ion，N． Ye，C． ton， N ． Oarner．
No．127．Chathsm，
No．188．Rookland， Me．，C．L．Garner．

Perdulum observations and reductions-Continued.

为

Pendulum observations and reductions－Continued．

	$\begin{aligned} & \text { a } \\ & \text { \% } \\ & \text { y } \end{aligned}$				$\begin{aligned} & 8.8 \\ & 808 \\ & \text { io } \\ & \text { in } \end{aligned}$	
	－	 	 		 	
	鈇					
	$\stackrel{\text { s. }}{\text { cis }}$	コニゴニッニコニ 11111111	000000000000060000 111111111	 11111111	 111111111	 111111111
		＋t＋t＋t＋t＋t	 	$++++++++t$	 $t+t+t+t+t$	 $t+t+t+t+t$
			111111111	111111111	111111111	50 1111111！
		แmencommen $+t+t++1$ 1	 ＋＋＋＋＋＋＋	－Hoしm mevos $++\quad+t++1$	$+t+t+t++1$	$+++++++++$
		$++++t+++t$	TTIT1TIT	 11111111	111111111	 111111111
	\％	11111111	111111111	111111111	111111111	
Period uncorrected			 			
密荡		E				
	羔	ミOO－ONANON 	 	niッiniテicanimin	$\infty \times \infty \times 000000 \infty$ nivininieviniन	－0000000－10000 ลinixirieniria
	宫䭴	 	 	เท่ เค่ เค่ แ่ แน เค่ เค่ เค่ แอ่	以	
		 	 	ば	 	
	$\begin{aligned} & \text { 名家禺 } \\ & \text { 0. } \end{aligned}$	 	 	N゙	 	
$\begin{aligned} & \text { 刃 } \\ & \text { ભٌ } \end{aligned}$			 なくなくれくな	 なくあくなくくくれ		
흉흠		APAAAAAAA	AAAAAAAAA	APAARAAAA	АAAAAAAAP	AAAAAAAAA
育言慁				－＜		
			mermbioorna	$\rightarrow \infty \times 0$－	－	－
				2 彩客 Bํㅜㄹ －0		

Pendulum observations and reductions-Continued.

		$\begin{aligned} & \text { öb } \\ & \text { ono } \\ & \text { ont } \end{aligned}$	$\begin{aligned} & \text { बiob } \\ & \text { siod } \\ & \text { sit } \end{aligned}$	$\begin{aligned} & \text { 7rob } \\ & \text { mit } \\ & \text { sit } \end{aligned}$	
 	 	 	준 ฐi玉isisisisisisis	 	
				 8 గ్రిగి 品若 루ㅇㅜㅏ웅	
				Whin․	
웅ํㅇํㅇํ욱 111111111	111111111111	111111111	$\begin{aligned} & \text { चニニニニニニニ } \\ & \text { 11111111 } \end{aligned}$	ニニニコニニニニコニ゙ゴ	
	$++++++++++++$	$+++++++++$		$++++++++++++$	 $+++++++++$
주ㅇㅕㅕㅇㅕㅓ영으크 1111111	1111111177	 11111111	 111111111		－ 111111111
－－migemonch	comon－tuencen		$x \rightarrow-0$ anoom	mongunnotnoro	－－－ancor－
＋＋1＋＋＋＋＋＋	＋t＋t＋t＋t＋＋1	$t+1++t+1$	$t++++++++$	$t++t++t+++$	$t+++1+++$
	 	111111111		 1111111111	111丁1111
シロロニニジニロッ 111111111	111111111111	111111111		ニニかかのタッグッニ゙ニニ゙ 111111111111	111111111
				4298\％	
 	 	㓥で 	－ สิส่ส่ส่ล่สีธ่ส่ส่	 	
－nx moorox	© ex evxcoxmenxor Nininvinumisinin	N00－9xam	－agn－M－009	canommonoomaj	
－Wem－mmany			－	Momotmatancom	
 	 	 	 	 	8）
	 	 	 	 	－in M
	 	\％ \％ o ： 	 	 	（o
AARAARAPA	ARAAAAAPADAA	ARARAAAAA	ARARAAAAA	RAAPARARARAA	anararana
－semenomon		－mmunombo	－mosmonmos		－10

Pendulum observations and reductions-Continued.

 111
 $t+t+t+t+t+t+t++t+t+t+t++t+$
 $111++4++++++$ $t+t+t+t+t+t+t+t+t 1+t+1+t+t+t+t+t+t+t+1+t+t+t+t+t+1+t+1+t+t+1+1+t+t$
 $t+t+t+t+t 111+t+t+t+t$
 $111111111 \ldots 11$

	สย์		ตัส			
内的以	¢ ¢	num	n	เ		
	¢				⿷匚⿱乛⿰㇀丶冂土	$\check{\check{\circ}}$
			\％	©is	\％\％	\％\％exe

：ส（x） む゙も゙ざずずずびず				！！！ 	为 	
คロロロロロロの	E	คロロロのロロロロ	－	－	のロの日号	AAAAAAAA
－	－	－	－			

Pendulum observations and reductions-Continued.

Chapter II.-DESCRIPTIONS OF STATIONS.

There are given below the descriptions of the 219 stations in the United States with the years in which they were established. The description is designed to enable one to recover the place where the pendulums were swung. The numbering of the stations is the same as that used in other parts of this volume.

No. 1, Key West, Fla. (1896).-Post office, southeast basement room. The case was mounted on the concrete floor.

No. 2, West Palm Beach, Fla. (1909). -Zapf's Opera House, room in basement under north part of building. The case was mounted on a concrete pier against a stone wall.

No. 3, Punta Gorda, Fla. (1909).-Punta Gorda Hotel, in the space partly walled in under the main entrance. The case was mounted on a low pier of concrete and brick against a buttress of the wall.

No. 4, A palachicola, Fla. (1909).-Observatory pendulum room on Weather Bureau signal grounds near the center of the Florida Promenade Park between Fifth and Sixth Avenues and First and Second Streets, extended. The case was mounted on a low brick pier.

No. 5, New Orleans, La. (1895).-City Hall, hallway in basement of building. The case was mounted on the slate - floor.

No. 6, Rayville, La. (1909).-Dr. J. H. Wilkins's office, medicine room in southeast corner of small one-story brick building south of the Vicksburg, Shreveport \& Pacific Railway tracks and three and one-half telegraph poles west of the crossing of the Vicksburg, Shreveport \& Pacific and the St. Louis, Iron Mountain \& Southern Railways. The case was mounted on bricks cemented together and to the concrete floor.

No. 7, Galveston, Tex. (1895).-Ball High School, storeroom on the ground floor. The case was mounted on the concrete floor.

No. 8, Point Isabel, Tex. (1909).-Constructed pendulum room 2.65 meters north and 0.67 meter west of the longitude pier used by Assistant Smith in 1906 and about 110 meters north of the lighthouse. The case was mounted on a low concrete pier.

No. 9, Laredo, Tex. (1895).-Commissary of Fort McIntokh, room in the basement. The case was mounted on a low brick pier build against the foundation wall.

No. 10, Austin, Tex. (capitol) (1895).-Capitol Building, basement room southeast of the rotunda. The case was mounted on the concrete floor.

No. 11, Austin, Tex. (university) (1895).-University of Texas, main building, Aquarium room in basement. The case was mounted on the corner of a concrete wall.

No. 12, Mc.Alester, Okla. (1909).-High school just east of the Masonic Temple, northeast corner of the shower-bath room on the ground floor. The case was mounted on three 6 -inch cube atone blocks, each cemented to the concrete floor.

No. 13, Little Rock, Ark. (1896 and 1914).-Post office, north center basement room. The case was mounted on the concrete floor.

No. 14, Columbia, Tenn. (1909).-Old dormitory of the high and public school, in southeast corner of basement near bathing tank. The case was mounted on three 6 -inch concrete blocks, each cemented to the concrete floor.

No. 15, Atlanta, Ga. (1896).-State Capitol, northwest basement room of the Washington Street wing. The case was mounted on the asphaltum floor.

No. 16, McCormick, S. C. (1909).-McCormick oil mill of the Anderson Phosphate Co., four and one-half telegraph poles west of the Charleston \& Western Carolina Railway depot, in the southeast corner of the furnace room at the south end of the building. The case was mounted on a low brick pier.

No. 17, Charleston, S. C. (1896).-South Carolins Military Academy (citadel), storeroom in the southwest corner of the ground floor. The case was mounted on the brick floor.

No. 18, Beaufort, N. C. (1909).-Masonic Hall on Turner Street, one block south of the courthouse; small room near the center of the north side of the basement. The case was mounted on a low concrete pier.

No. 19, Charlottesville, Va. (1894).-University of Virginia, basement of biological laboratory. The case was mounted on a low brick pier.

No. 20, Deer Park, Md. (1894).-East corner of swimming-pool building west of the Deer Park Hotel. The case was mounted on a low stone pier.

No. 21, Washington, D. C. (1900).-Office of the United States Coast and Geodetic Survey, New Jersey Avenue and B Street SE., pendulum room in southwest corner of basement. The case was mounted on a massive brick pier.

No. 22, Washington, D. C. (Smithsonian Institution) (1891).-Northeast basement of the Smithsonian Institution. The case was mounted on a brick pier.

No. 23, Baltimore, Md. (1893).-Johns Hopkins University, basement of the physical laboratory. The case was probably mounted on a brick or masonry pier.

No. 24, Philadelphia, Pa. (1894).-University of Pennsylvania, small room in northweat corner of basement of College Hall. The case was mounted on the concrete floor.

No. 25, Princeton, N. J. (1894).-College of New Jersey, basement of magnetic observatory or electrical building. The case was mounted on a tall brick pier.

No. 26, Hoboken, N. J. (1891).-Basement of the Stevens Institute of Technology. The case was probably mounted on a brick or masonry pier.

No. 27, New York, N. Y. (1899).-Columbia University, in a small room in the sub-basement near the center of the front of the Physics Building. The case was mounted on a brick pier.

No. 28, Worcester, Mas8. (1899).-Worcester Polytechnic Institute, in the southwest corner of the constant temperature room of the physical laboratory which is near the middle of the north side of the basement. The case was mounted on a atone pier.

No. 29, Boston, Mass. (1894).-New addition to State house, vault in northeast part of basement. The case was mounted on the concrete floor.

No. 30, Cambridge, Mass. (1894).-Harvard College Observatory, basement room north of equatorial foundation. The case was mounted on the heavy stone doorsill.

No. 31, Caluis, Me. (1895).-Basement of high-school building. The case was mounted on the concrete floor.
No. 32, Ithaca, N. Y. (1894).-Cornell University, in the metric room in the northeast part of the basement of Lincoln Hall. The case was mounted on a tall brick pier.

No. 33, Cleveland, Ohio (1894).-Adelbert College, in balance room in the west comer of the basement. The case was mounted on a large brick pier with capstone.

No. 34, Cincinnati, Ohio (1894).-Cincinnati Observatory on Mount Lookout, in the basement north of the foundation of the meridian circle. The case was mounted on a low brick pier built on the brick floor.

No.35, Terre Haute. Ind. (1894).-Rose Polytechnic Institute, in the west room of the basement of the main building. The case was mounted on a large brick pier with slate top.

No. 36, Chicago, Ill. (1894).-University of Chicago, constant temperature room in the northeast part of the main floor of the Ryerson Physical Laboratory. The case was mounted on a massive brick pier with capstone.

No. 37, Madison, Wis. (1906).-University of Wisconsin, in the basement of Science Hall. The case was mounted on a brick pier.

No. 38, St. Louis, Mo. (1894). Washington University, in the south basement room of the chemical laboratory, which is near the northwest corner of St. Charles and Seventeenth Strects. The case was mounted on a low pier built on the brick floor.

No. 39, Kansas City, Mo. (1894).-Franklin School at the northeast corner of Washington Avenue and Fourteenth Street, in a emall storeroom in the south part of the basement. The case was mounted on bricks cemented to the concrete floor.

No 40, Ellsworth, Kans. (1894).-Ellsworth County courthouse, near the center of the basement. The case was mounted on a large stone doorsill.

No. 41, Wallace, Kans. (1894).-Stone residence northwest of station belonging to the Union Pacific Railway, in the basement. The case was mounted on a stone doorsill.

No. 42, Colorado Springs, Colo. (1894). -Colorado College, small room near northeast corner of basement of Hagerman Hall. The case was mounted on a low pier built on the concrete floor.

No. 43, Pikes Peak, Colo. (1894).-Small storeroom at south end of stone building on the east side of the summit. The case was mounted on large stones cemented to the concrete floor.

No. 44, Denver, Colo. (1894).-University of Denver, in the basement of Chamberlin Observatory south of the equatorial foundation. The case was mounted on large stones cemented to the concrete floor.

No. 45, Gunnison, Colo. (1894).-La Veta Hotel, small room beneath the sidewalk at the northeast corner. The case was mounted on a heavy stone doorsill. .

No. 46, Grand Junction, Colo. (1894).-Brunswick Hotel, on Main Street west of Fourth Street, in the cellar under the northeast corner. The case was mounted on a low brick pier.

No. 47, Green River, Utah (1894).-Palmer House, in the east corner of the cellar under the south part of the building. The case was mounted on a low brick pier built on the concrete floor.

No. 48, Pleasant Valley Junction, Utah (1894).-Residence of T. Arrowsmith, about 65 meters north of the Rio Grande Western Railway station, in the west corner of the cellar. The case was mounted on a low brick pier.

No. 49, Salt Lake City, Utah (1894).-Small astronomical observatory in the southeast corner of Temple Block. The caee was mounted on a stone pier 1 meter high.

No. 50, Grand Canyon. Wyo. (1894).-Canyon Hotel, in Yellowstone Park, in the unfinished basement at the west end of the main building. The case was mounted on a low brick pier.

No. 51, Norris Geyser Basin, Wyo. (1894).-In Yellowstone Park, in a amall room at the entrance to the atorehouse west of the lunch station at Norris Geyser Basin. The case was mounted on three wooden posts driven into the ground and braced.

No. 52, Lower Geyser Busin, Wyo. (1894).-Fountain Hotel, in Yellowstone Park, in an unfinished room in the basement at the north end oi the central wing. The case was mounted on a low brick pier.

No. 53, Seattle, Wash. (university) (1899).-Washington State University, just northeast of Lake Union, in the physical laboratory which is near the east end of the basement of the main building. The case was mounted on a masonry pier with marble top.

No. 54, San Francisco, Cal. (1891).-This station is probably located in the Davidson Observatory in Lafayette Park. The case was mounted on a brick pier.

No. 55, Mount Hamilton, Cal. (1891).-Lick Observatory, on Mount Hamilton. The case was mounted on a brick pier.

No. 56, Seattle Wash. (high school) (1891 and 1899).-High-school building, in a small room used for storing arms partitioned off from the northwest room of the basement. The case was mounted on the concrete floor.

No. 57, Iron River, Mich. (1909 and 1910)-High school, just north of the center of town and two blocks west of the railway depot, in a small room in the basement, which is near the foot of the stairway leading from the western one of the main entrances to the basement floor. The case was mounted on three bricks cemnted to the concrete fioor, one brick under each footplate.

No. 58, Ely, Minn. (1909).-High school, 1905, small storage room under stair landing in west end of basement. The case was mounted on the concrete floor.

No. 59, Pembina, N. Dak. (1909).-Public school, also used as high school, temporary room constructed in west corner of the basement. The case was mounted on low concrete pier.

No. 60, Mitchell, S. Dak. (1909).-Dakota Wesleyan University, College Hall 1889, chemical storeroom in the south side of the basement about 30 feet from the southwest corner of the building. The case was mounted on the concrete floor.

No. 61, Sweetwater, Tex. (1910). -Cyclone cellar of Russell Rhoades just to the rear of his dwelling, which is the second house on the east side of the street leading south from the Texas \& Pacific Railway tracks to the Sweetwater Mineral Springs Park. The case was mounted on the concrete floor.

No. 62, Kerrville, Tex. (1910).-Lowry Block, a little south of the courthouse grounds, in the basement. The case was mounted on the concrete floor.

No. 63, El Paso, Tex. (1910).-El Paso High School, North Kansas and Arizona Streets, small room under stairway in the southwest side of the basement and near the outside basement door. The case was mounted on the concrete floor.

No. 64, Nogales, Ariz. (1910).-Public-school building, small room used as library and storeroom in the south side of the bssement. The case was mounted on a concrete pier.

No. 65, Yuma, Ariz. (1910).-Public-school building, corner of Second Avenue and Third Street, a temporary room constructed in the southeast corner of the basement room which is to be used for manual training. The case was mounted on the concrete floor.

No. 66, Compton, Cal. (1910).-High school, in the northeast corner of the southwest corner room of the basement. The case was mounted on the concrete floor.

No. 67, Goldfield, Nev. (1910).-High school, corner of Ramsey and Euclid Streets, in small oil room on the boys' side of the basement near the northwest side of the building. The case was mounted on the concrete floor.

No. 68, Yavapai, Ariz. (1910).-Yavapai Point, in small tunnel on the rim of the Grand Canyon, 1.2 miles east of El Tovar Hotel. The case was mounted on three stones cemented to the rocky floor of the tunnel.

No. 69, Grand Canyon, Ariz. (1910).-Bright Angel trail, in a tunnel on the mining claim of Mr. Cameron near the bottom of the Grand Canyon, 55 paces west from the steep part of the trail known as the "corkscrew" and 12 feet above the bed of a creek. The case was mounted on three stones embedded in a 4-inch layer of concrete on the rocky floor of the tunnel.

No. 70, Gallup, N. Mex. (1910).-Public-school building, temporary room constructed in the northeast corner of the basement The case was mounted on a low concrete pier.

No. 71, Las Vegas, N. Mex. (1910).--Normal school on Main Street between Eighth and Ninth Streets, East Las Vegas, girls' dormitory, a temporary room constructed in the southeast corner of the west room of the basement. The case whes mounted on the concrete floor.

No. 72, Shamrock, Tex. (1910).-Cyclone cellar near the northwest corner of the residence of E. H. Small, about one-half mile southwest of the main part of Shamrock. The case was mounted on the concrete floor.

No. 73, Denison, Tax. (1910).-High school, northwest corner of Main Street and Barrell Avenue, in basement storeroom between the physical and chemical laboratories. The case was mounted on three concrete blocks, each cemented to the concrete floor.

No. 74, Minneapolis, Minn. (1910).-University of Minnesota, constant temperature room, near the center of the basement of the physical laboratory. The case was mounted on a stone plinth 4 inches thick cemented to the tile floor.

No. 75, Lead, S. Dak. (1910).-High-school building, vault near the middle of the east side of the basement. The case was mounted on three concrete blocke molded in place on the concrete floor.

No. 76, Bismarek, N. Dak. (1910).-Will School building, superheating room, center of basement. The case was mounted on a low concrete pier.

No. 77, Hinsdale, Mont. (1910).-Public school, middle of the north side of the basement. The case was mounted on a low concrete pier.

No. 78, Sandpoint, Idaho (1910).-Farmington Central School, alcove under the stairs of the main entrance in the middle of the north side of the basement. The case was mounted on three bricks, each cemented to the concrete floor.

No. 79, Boise, Idaho (1910).-High-school building, new (1908) east wing of boys' dressing room in south part of basement directly under the Tenth Street entrance. The case was mounted on three bricks, each cemented to the concrete floor.

No. 80, Astoria, Oreg. (1910).-Federal Building (customhouse and post office), temporary room constructed in the west part of the basement. The case was mounted on three bricks, each cemented to the concrete floor.

No. 81, Sisson, Cal. (1910).-Sisson Tavern at Berryvale, about 1 mile west and $\frac{1}{t}$ mile south of the Sisson railroad station, a temporary room constructed in the basement under the southwest corner of the main part of the building The case was mounted on a concrete pier.

No. 82, Rock Springs, Wyo. (1910).-City Hall, room near the middle of the southeast side of the basement and just east of the boiler room. The case was mounted on a low concrete piar.

No. 83, Paxton, Nebr. (1910).-Globe Hotel, cellar under the storehouse at the rear of the hotel. The case was mounted on three bricke, each cemented to the concrete floor.

No. 84, Washington, D. C. (Bureau of Standards), (1910).-Room No. 16, near the center of the basement of the physical laboratory or main building. The case was mounted with one brick under each footplate cemented to the concrete floor.

No. 85, North Hero, Vt. (1909 and 1910).-Irving House, middle of east side of the east room of the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 86, Lake Placid, N. Y. (1909). -Lake Placid Inn, storeroom in the east corner of the basement directly below. he hotel dining room. The case was mounted on a low concrete pier.

No. 87, Potsdam, N. Y. (1909).-Clarkson School of Technology, photometric room, on the ground floor, directly north of north entrance to the furnace room. The case was mounted on a stone pier composed of two large stone blocks resting on the concrete floor.

No. 88, Wilson, N. Y'. (1909).-Wilson High School, middle furnace room in the center of the basement. The case was mounted on a low concrete pier.

No. 89, Alpena, Mich. (1909).-City hall, alcove under steps at the northwest end of the basement hall and just to the left of the entrance to the office of chief of police. The case was mounted on the concrete floor.

No. 90, Virginia Beach, Va. (1911).-Arlington Hotel, temporary room constructed in the northeast corner of the basement of the north wing. The case was mounted on low concrete pier which in turn rested on the brick floor.

No. 91 , Durham, N. C. (1911).-Trinity College, Academic Building. small room in middle of east end of basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 92, Fernandina, Fla. (1911).-Federal Building, northeast corner of Center and Fourth Streets, coal room in the southeast corner of the basement. The case was mounted on three bricks each cemented to the concrete floor.

No. 93, Wilmer, Ala. (1911 and 1915).-Abandoned ice house at the east end of the post office, which is located at the point where the main road from the railway station turns to the westward. The case was mounted on a orick pier.

No. 94, Aliceville, Ala. (1911).-Constructed pendulum room located on a public highway or West First Street, 47.5 feet north of the building line on the north side of Third Avenue and 23 feet west of the building line on the east side of West First Street. The case was mounted on a concrete pier.

No. 95, New Madrid, Mo. (1911).-High-school building, furnace room in the basement at the west end of the west wing. The case was mounted on three bricks each cemented to the concrete floor.

No. 96, Mena, Ark. (1911).-High-school building, southwest corner of Eleventh Street and Magnolia Avenue, furnace room in the basement under the east end of the building. The case was mounted on three bricks each cemented to the concrete fioor.

No. 97, Nacogdoches, Tex. (1911).-M. E. Church on Hospital and Pecan Streets, small room off the west end of the vestry in the north end of the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 98, Alpine. Tex. (1911).-High-school building at the foot of Sixth Street, small basement room in the middle of the west side of the building directly under the west entryway. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 99, Farwell, Tex. (1911).-Farwell Hotel at the southwest corner of the public square, basement room in southwest corner of the building. which is unoccupied. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 100, Guymon, Okla. (1911).-Summers Building, small inside room off the northeast comer of the barber shop. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 101, Helenwood, Tenn. (1911).-Observatory pendulum room on the premises of Mr. Duncan, directly opposite the railroad station at Helenwood, 40 feet south of Mr. Duncan's north fence line and 16 feet west of his east fence line and about 400 feet east of the railroad station. The case was mounted on a pier of concrete building blocks.

No. 102, Cloudland, Tènn. (1909).-Summit of Roan Mountain, Old Cloudland Hotel, northwest corner of the southeast room on the ground floor. The case was mounted on a concrete pier.

No. 103, Hughes, Tenn. (1909 and 1911).-Observatory pendulum room on Lewis Hughes's farm, in the corner of his pasture lot, and about 75 feet due east of the north end of his house, which is the first house on the east side of Cove Creek just south of its junction with Doe River, $1 / 4$ miles east of Hughes Gap and $19 / 8$ miles west by south from Burbank. The case was mounted on a concrete pier.

No. 104, Charleston, W. Va. (1911).-High-school building on Quarrier Street near Broad Street, boys' coat room in the basement under the boys' entrance on the northwest side of the building. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 105, State College, Pa. (1911).-Chemistry-Physics Building of Pennsylvania State College, photometer room in the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 106, Fort Kent, Me. (1909).-Dickey Hotel, in the north corner of the basement directly under the hotel office. The case was mounted on a low concrete pier.

No. 107, Prentice, Wis. (1911).-Public-school building, room in the basement under the east entrance to the building. The case was mounted on a concrete pier.

No. 108, Fergus Falls, Minn. (1911).-High-school building on Cavour Street between Court and Union Streets, girls' entrance to the basement from the north side of the building. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 109, Sheridan, Wyo. (1911).-County courthouse, southwest corner of South Main and West Burkill Streets, room in the northwest corner of the basement known as storage vault No. 2. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 110, Boulder, Mont. (1911).-Public school south of the courthouse, boys' toilet in the southeast corner of the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 111, Skykomish, Wash. (1911).-Public-school building, boiler room. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 112, Olympia, Wash. (1911).-Washington School building on West Fifth and Quince Streets, boys' toilet in the basement east of the main entrance on the north side of the building. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 113, Heppner, Oreg. (1911).-Morrow County courthouse, storage room in the middle of the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 114, Truckee, Cal. (1911).-High-school building, temporary room constructed in the northeast corner of the southern half of the basement. The case was mounted on a concrete pier.

No. 115, Winnemucca, Nev. (1911).-Store owned by H. Warren, on Bridge Street, next to the fire station, furnace room in the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 116, Ely, Nev. (1911).-Graded-school building, storage room in the northeast corner of the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 117, Guernsey, Wyo. (1911).-Guernsey Hotel, basement room about the middle of the south side. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 118, Pierre, S. Dak. (1911).-High-school building opposite the ('apitol, storage room in basement between the toilet and the gymnasium. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 119, Fort Dodge, Iowa (1911).-High-school building, storage room about the center of the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 120, Keithsburg, Ill. (1911).-Public-school building, temporary room constructed in the basement under the west part of the building. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 121, Grand Rapids, Mich. (1911).-Smaller building on the northwest corner of the new high-school grounds, at Fountain and North Prospect Streets, boiler room in the northwest corner of the basement. The case was mounted on the concrete floor.

No. 122, Angola, Ind. (1911).-Public-school building on East Water Street between South Wayne and South Martha Streets, storage room in the southeast corner of the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 123, Albany, N. Y. (1911 and 1914).-Public School No. 24, at Delaware and Dana Avenues, janitor's storeroom in the basement, under the boys' entrance on the east side of the building. The case was mounted with two bricke under each footplate cemented together and to the concrete floor.

No. 124, Port Jervis, N. Y. (1911).- (hurch Street School building, basement room about the middle of the southeast side of the building. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 125, Atlantic City, N. J. (1914).-New high school, corner of Atlantic and Massachusetts Avenues, northwest corner of the dark storeroom in the basement, directly under the steps at the Atlantic Avenue entrance. The case was mounted on a slate slab 3 inches thick cemented to the floor.

No. 126, Bridgehampton, N. Y. (1914).-High-school building, near the north side of the laboratory room in the basement. The case was mounted on the concrete floor.

No. 127, Chatham, Mass. (1914).-In northwest corner of the small concrete fish house belonging to A. E. Thatcher on the north side of the mill pond. The case was mounted on the concrete floor.

No. 128, Rockland, Me. (1914).-Home of Fred Burpee, at 104 Limerock Street, in the northwest corner of the south extension of the basement or cellar. The case was mounted on the concrete floor.

No. 129, Lancaster. N. H. (1914).-High school, near the intersection of Main and School Streets, in the basement near the northwest corner of the southwesterly room used as a bath and dressing room for the gymnasium. The case was mounted on the concrete floor.

No. 130, Whitehall, N. Y. (1914)-Armory at the corner of Willian and Daultney Streets, near the northwest corner of the dark room in the basement. The case was mounted with one brick under each footplate cemented to the concrete floor.

No. 131, Little Falls. N. Y. (1914).-Benton Hall School, on the east side of the park, at the corner of Alexander and Waith Streets, in a temporary room constructed in the most northwesterly room of the basement. The case was mounted on the concrete floor.

No. 132, Watertown, N. Y. (1914).-High achool, on Sterling Street between Washington and Jay Streets, in the carpenter shop in the basement. The case was mounted on the concrete floor.

No. 133, Southport, N. Y. (1914).-In the basement of a small store on Pennsylvania Avenue used as a storeroom by Sargent \& Sage, whose grocery store is the next building east at the corner of Pennsylvania and Caton Avenues. The case was mounted on a pier built of brick, stone, and plaster of Paris.

No. 134, Erie, Pa. (1914).-Public School No. 2, at the corner of Seventh and Holland Streete, in the basement storeroom under the steps at the south entrance. The case was mounted on the concrete floor.

No. 135, Parkersburg, W. Va. (1914).-Post office, in the southeast corner of the small room in the northeast corner of the basement. The case was mounted with one brick under each footplate cemented to the concrete floor.

No. 136, Columbus, Ohio (1914).-Franklin County Memorial Hall, on East Broad Street, in the northeast corner of a triangular-shaped room called the kitchen, in the basement back of the stage. The case was mounted with one brick under each footplate cemented to the concrete floor.

No. 137, Indianapolis, Ind. (1914).-Post office, in a emall triangular-shaped room on the Meridian Street side of the basement used as a storeroom by the engineer of the building and directly across the hall from the west elevator. The case was mounted on the concrete floor.

No. 138, Springfield, Ill. (1914).-Edwards Public School, at the corner of Lawrence Avenue West and Edwards Street, in a room near the center of the north front of the basement. The case was mounted on the concrete floor.

No. 139, Lebanon, Mo. (1914).-New high school, in the furnace room about 2 feet from the corner of the brickwork supporting the boiler. The case was mounted on the concrete floor.

No. 140, Joplin, Mo. (1914).-Post office, a small room with a sloping ceiling under the stairway in the northeast corner of the basement. The case was mounted on the concrete floor.

No. 141, Fort Smith, Ark. (1914).-Courthouse, in the northeast corner of the room used as a test room for cement, etc., by the city engineer, in the southeast corner of the basement. The case was mounted on the concrete floor.

No. 142, Texarkana, Ark. (1914).-Post office, in the northwest room of the basement of the north wing. The case was mounted on the concrete floor.

No. 143, Hot Springs, Ark. (1914).-Garland County courthouse, in the north corner room of the ground floor. The case was mounted on the concrete floor.

No. 144, Alexandria, La. (1914).-City hall, in one of the small closets under the steps on the northwest side of the basement and just to the left of the short flight of steps leading to the main hall of the basement. The case was mounted on the concrete floor.

No. 145, Laurel, Miss. (1914).-Silas Gardner School, in a room on the north side of the basement, the first room to the left when entering the basement at the east door and just across the hall from the domestic-ecience kitchen. The case was mounted on the concrete floor.

No. 146, Richmond, Va. (1915).-Post office, in a room near the center of the south side of the basement used as a storeroom by the internal-revenue department. The case was mounted with one brick under each footplate cemented to the concrete floor.

No. 147, Emporia, Va. (1915).-The station is in the county courthouse. Two sets of observations were made, the first in the office of the commissioner of revenue in the south wing of the courthouse and the second in the southeast corner of the mayor's office, which is the next room. For the first set the case was mounted on the wooden floor and for the second set the case was mounted on the concrete floor.

No. 148, Greenville, N. C. (1915).-Proctor Hotel, on the corner of Evans and Third Streets, in room No. 2 of the higher or back level of the basement, the second room from the steps leading from the lower or front part of the basoment and on the left side of the hallway. The case was probably mounted on the concrete floor.

No. 149, Wilmington, N. C. (1915).-County courthouse at the intersection of Third and Princess Streets, in a room in the basement once used as a storeroom for disinfectants by the city health officer. It is on the side of the basement toward Princess Street and the last room but one on the left side of the corridor at right angles to Third Street. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 150, Cheraw, S. C. (1915).-Hotel Covington, in a back room on the first floor, the second room from the northwest end of the building and directly opposite the office of Dr. Purvis. The room is separated from the next one by a partition two-thirds of the way to the ceiling. The case was probably mounted on the concrete floor.

No. 151, Charlotte, N. C. (1915).-United States assay office, in a small room in the east corner of the basement. The case was probably mounted on the concrete floor.

No. 152, Asheville, N. C. (1915).-Post office, in the northeast corner room of the basement which has two small windows opening on Haywood Street. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 153, Cleveland, Tenn. (1915).-Post office, in the southwest corner of the basement, in a room ueed as a rest room for the rural carriers. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 154, Winston-Salem, N. C. (1915).-High school on Cherry Street at the head of Third Street, in the southwest corner of the basement in a room used as a storage room. The case was probably mounted on the concrete floor.

No. 155, Knoxville, Tenn. (1915).-Western Union office building, on Gay Street near Vine Street, in the basement in a room used as a storeroom by the linemen and about 10 feet from the foot of the stairs leading down from the main office. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 156, Bristol, Va. (1915).-Courthouse and city hall, in a room on the south side of the basement next to the southeast corner room. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 157, Homestead, Fla. (1915).-High school, in a temporary room constructed on the north end of the west porch. The case was mounted with two bricks under each footplate cemented together and to the concrete floor of the porch.

No. 158, Sebrind, Fla. (1915).-Kiln for drying lumber, about 40 meters northeast of the electric-light plant and 100 meters northeast of the Atlantic Coast Line Railway station. The case was mounted on a pier made of concrete blocks cemented together, with two bricks under each footplate cemented together and to the top of the pier.

No. 159, Titusville, Fla. (1915).-Small office belonging to J. S. Daniels near the northwest corner of Palm and Julia Streets. The case was mounted on a pier made of concrete blocks cemented together, with two bricks under each footplate cemented together and to the top of the pier.

No. 160. Leesburg, Fla. (1915).-George W. Wrenneck Building, at the corner of Main and Seventh Streets, in the southwest corner of the back room. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 161, Cedar Keys, Fla. (1915),-House belonging to J. B. Lutterdah, at the northeast cormer of Fifth and D Streets, in the northwest corner of the south basement room. The case was mounted on a brick pier with two bricks under each footplate cemented together and to the top of the pier.

No. 162, Macon, Ga. (1915).-Post office, near the window of the engineer's room in the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 163, Albany, Ga. (1915).-Grammar school at the corner of Broad and Madison Streets, in the northwest corner of the janitor's storeroom in the basement. The case was mounted with one brick under each footplate cemented to the concrete floor.

No. 164, Pensacola, Fla. (1915).-Customhouse and post office, in the northeast corner of the customhouse storeroom in the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 165, Opelika, Ala. (1915). -New brick store on Avenue A, owned by Mrs. Josephine Denniston and rented by J. Lem Satterwhite, in the southeast end of the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 166, Huntsville, Ala. (1915).-United States courthouse and post office, in the easternmost room in the basement. The case was mounted with two bricks under cach footplate cemented together and to the concrete floor.

No. 167, Arkansas Cily, Ark. (1915).-Courthouse, in the west corner of the grand jury room. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 168, Memphis, Tenn. (1915).-Customhouse and post office, in the northeast corner of the northeast room in the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 169, Mammoth Spring, Ark. (1915).-Old Fulton County Bank Building, owned by the Citizens Bank of Mammoth Spring, in a small room used for ice storage in the southwest corner of the north basement room. The case was mounted with twe bricks under each footplate cemented together and to the concrete floor.

No. 170, Hopkinsville, Ky. (1915).-Custonhouse and post office, in the southeast corner of the northeast room of the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 171, Danville, Ky. (1915).-Customhouse and post office, near the center of the north end of the room used as a coal bin in the northeast corner of the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 172, Clifton Forge, Va. (1915).-Courthouse and post office, in the north end of the storeroom near the center of the west side of the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 173, Greenville, Ala. (1915).-Courthouse, in the west end of the coal bin in the boiler room in the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 174, Birmingham, Ala. (1915).-United States customhouse and post office at the northeast corner of Second Avenue and Eighteenth Street, in the janitor's office in the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 175, Lexingtom, Va. (1915).-Post office at the corner of Lee Avenue and Nelson Street, in the southwest end of the storeroom near the center of the northeast side of the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 176, Prestonsburg, Ky. (1915).-The Bank Josephine, on Main Street, at the foot of the bridge over the Big Sandy River, in the northwest corner of the southwest room in the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 177, Traverse City, Mich. (1915).-Post office, in storeroom in the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 178, Seney, Mich. (1915),-Bank of the Boggott, Bacheller \& Cool Banking Co., in the vault. The case was mounted on the concrete floor.

No. 179, Oconto, Wis. (1915).-High school on School Street, in the mechanical drawing ronm in the south corner of the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 180, Grand Rapids, Wis. (1915).-Bandelin Hotel on Grand Avenue, in the basement near the middle of the east side. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 181, Winona, Minn. (1915).-Post office, in the northeast comer room of the basement. The case was mounted on the brick floor, with one paving brick under each footplate.

No. 182, Baldwin, Wis. (1915).-Town Hall, in the rest room in the basement at the foot of the stairs leading from the main entrance of the building. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 183, Cumberland, Wis. (1915).-High-school building, in the boiler room in the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 184, Cambridge, Minn. (1915).-High-school building, in the west part of the boiler room in the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 185, Brainerd, Minn. (1915).-Post office at northwest corner of Maple and Sixth Streets, in a room about midway of the west side of the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 186, Aberdeen, S. Dak. (1915).-Post office and courthouse, in the north end of the small storeroom at the north end of the basement. The case was mounted with a small concrete block under each footplate cemented to the concrete floor.

No. 187, Faith, S. Dak. (1915).-W. C. Meyer's residence, about 260 meters west-southwest from the Chicago, Milwaukee \& St. Paul Railway Station, in the northwest room of the basement. The case was mounted with a small concrete block under each footplate cemented to the concrete floor.

No. 188, Marmarth, N. Dak. (1915).-Allison Building, on the corner of Main and First Streets, in the west end of a small storeroom in the basement directly beneath the post office. The case was mounted with a small concrete block under each footplate cemented to the concrete floor.

No. 189, Towner, N. Dak. (1915).-McHenry County courthouse, in the west end of the vault in the bsement. The case was mounted with a small concrete block under each footplate cemented to the concrete floor.

No. 190, Crosby, N. Dak. (1915).-Crosby graded school, in the northwest room in the basement. The case was mounted with a small concrete block under each footplate cemented to the concrete floor.

No. 191, Crookston, Minn. (1915).-Franklin School, in the east part of the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 192, Poplar Mont. (1915).-Poplar public school in the northeast part of the town, in the east room in the basement. The case was mounted with a small concrete block under each footplate cemented to the concrete floor.

No. 193, Miles City, Mont. (1915).-Lincoln School, on Lake Street, in the south part of the town, in the south end of the west storeroom in the basement. The case was mounted with a small concrete block under each footplate cemented to the concrete floor.

No. 194, Huntley, Mont. (1915).-Huntley Hotel, north-northwest of the railway station, in the southeast cornor of the basement room under the south part of the hotel. The case was mounted with a small concrete block under each footplate cemented to the concrete floor.

No. 195, Lander, Wyo. (1915).-Post office and courthouse, in the south end of the storeroom in the south corner of the basement. The case was mounted with a small concrete block under each footplate cemented to the concrete floor.

No. 196, Faribault, Minn. (1915).-Central School, in the southeast corner room of the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 197, Sl. James, Minn. (1915).-County courthouse, in the basement midway of the north side of the building. The case was mounted with two bricks under each footplate cemented togcther and to the concrete floor.

No. 198, Edgemont, S. Dak. (1915).-Public-school building, in the southwest corner of the southeast room in the basement. The case was mounted with a small concrete block under each footplate cemented to the concrete floor.

No. 199, Dawson, Minn. (1915).-High-school building, in the dark room in the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 200, Cokato, Minn. (1915).-High school, in the basement under the central part of the east side of the building. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 201, Wasta, S. Dak. (1915.)-Residence of James Trask on the east side of the street one block west and two blocks north from the railway station, in the northwest corner of the cellar under the southeast corner of the house. The case was mounted with a small concrete block under cach footplate cemented to the concrete floor.

No. 202, Moorcioft, Wyo. (1915).-Public-school building, on the south side of the east room in the basement. The case was mounted with a small concreto block under each footplate cemented to the concrete floor.

No. 203, Duluth, Minn. (1915).-County courthouse, in a room known as the connecting hall in the basement under the center of the building. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 204, Osage, Iowa (1915). -High school, in the basement near the middle of the south side of the building and directly under the galvanized-iron air duct. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 205, Randolph, Nebr. (1915).-Public school near the Burlington Railway station, in the southwest corner of a temporary room constructed in the west end of the southernmost ventilating room in the basement under the east side of the building. The case was mounted with a small concrete block under each footplate cemented to the concrete floor.

No. 206, Valentine, Nebr. (1915).-Public school, in the southeast corner of the southeast room in the basement. The case was mounted with a small concrete block under each footplate cemented to the concrete floor.

No. 207, Wheeling, W. Va. (1915),-German Bank Building, in the basement under the Western Union Telegraph office. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 208, Leon, Iowa (1915).-North School, in the south side of the northwest room on the ground floor. The case was mounted with a small concrete block under each footplate cemented to the concrete floor.

No. 209, Laurel, Md. (1915). - Residence of Col. Frank E. Little on Main Street about 10 minutes walk from the Baltimore \& Ohio Railway station, in the east corner of the easternmost room in the basement. The case was mounted with a small concrete block under each footplate cemented to the concrete floor.

No. 210, Harrisburg, Pa. (1915).-Central High School, in the basement near the center of the north side of the building. The cast was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 211, Pittsburg, Pa. (1915).-Second Ward School on Sherman Avenue just north of North Avenue in the north-side section of Pittsburgh, in the basement under the east front of the building. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 212, Rockville, Md. (1915).-High school, in the north end of a small room formerly used as a printing shop in the basement under the north side of the building. The case was mounted with a small concrete block under each footplate cemented to the concrete floor.

No. 213, Upper Marlboro, Md. (1915).-Masonic Hall on the south side of Main Street about 80 meters west of the courthouse, in the west side of the southeast room in the basement. The case was mounted with a small concrete block under each footplate cemented to the concrete floor.

No. 214, Fairfax, Va. (1915).-Bungalow belonging to thr Rural Homes Development Co. about 300 meters westnorthwest from the residence of E. A. Capen, in the southwest corner of the basement. The case was mounted with a amall concrete block under each footplate cemented to the concrete floor.

No. 215, Crisfield, Md. (1915).-Residence of J. H. Riggin, 101 South Somerset Avenue, in the rear part of the basement. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 216, Fredericksburg, Va. (1915).-Post office, storeroom in the basement under the north side of the building. The case was mounted on the concrete floor.

No. 217, Dover, Del. (1915).-Wilmington Conference Academy, in the basement under the gymnasium at the middle of the north side of the building. The case was mounted with two bricks under each footplate cemented together and to the concrete floor.

No. 218, North Tamarack near Calumet, Mich. (1902).-Observations were made at three different levels at North Tamarack Mine, at the surface of the ground, at a depth of 1200 feet, and at a depth of 4600 feet. The two stations below the ground were occupied by Prof. F. W. McNair, of the Michigan College of Mines. His results are not published here. A temporary pendulum room was probably used for the surface observations. The case was mounted on a masonry pier.

No. 219 Hagerstown, Md. (1915).-Post office, in the northeast corner of the boiler room in the northwest corner of the basement. The case was mounted with a small concrete block under each foot plate cemented to the concrete floor.
?

INDEX TO THE PUBLICATIONS CONTAINING ABSTRACTS OF RESULTS AND DESCRIPTIONS OF GRAVITY STATIONS IN THE UNITED STATES

Name of station	No. of	Obsarver	Year observed	$\begin{gathered} \text { Descrip- } \\ \text { tion, this } \\ \text { publicarar } \\ \text { tion } \end{gathered}$	Abstract				
					$\begin{aligned} & \text { This } \\ & \text { publicar } \\ & \text { tion } \end{aligned}$	$\begin{aligned} & \text { Report, } \\ & \text { 1891, } \\ & \text { App. } 15 \end{aligned}$	$\begin{gathered} \text { Report, } \\ \text { 1894, } \\ \text { App. } 1 \end{gathered}$	$\begin{aligned} & \text { Report, } \\ & \text { 1897,' } \\ & \text { App.6 } \end{aligned}$	Report, 1898-99, App.
				Pape	Page	Page	Page	Pape	Pape
Aberdeen, S. Dak	189	C. L. Garner	1915	184	172				
Albany, Ga.	163do.	1915	18	170				
Albany, N. Y	123	T. L. Warner	1911	181	157				
Alexandria, La	14	J. D. Powell .	1914	182	180				
Allicerille, Als	94	H. D. King.	1911	180	153				
Alpena, Mich	E	W. H. Burger.	1809	180	147				
Alpine, Tex	98	H. D. King.	1911	180	154				
Angols, Ind..	122	T. L. Warner.	1911	181	157				
Apalachlicols, Fla	d	W. H. Burger.	1909	177	145				
Arkanese City, Arl	167	C. L. Garner.	1915	18	171				
Asheville, N. C	152	J. D. Powell.	1915	182	161				
Astoris, Oreg	80	H. D. King.	1910	180	151				
Atlanta, Os	15	G. R. Putnam.	1888	177				308	
Allantic City, N. J .	125	C. L. Garner.	1914	181	187				
Austin, Teex. (eapitol).	10	G. R. Putnam	1895	177				54	
Austin, Tex. (university)	11do........	1895	177				304	
Maldwin, Wis	182	J. D. Powell .	1915	184	183				
Baltimore, Md.	23 18	E. D. Preston. W. ${ }^{\text {H. }}$. Burger.	180 190	178 177	145		$\left\{\begin{array}{c} \text { App. 2, } \\ 61 \text { (of } \\ 94 .) \end{array}\right.$		
Birmingham, Als	174	C. L. Garner.	1915	183	170				
Blsmarck, N. Dak	78	H. D. King.	1910	179	151				
Boise, Idaho ..	79do.	1910	180	151				
Boston, Mass	29	G. R. Putnam	1894	178			31		
Boulder, Mont	110	T. L. Warner..	1911	181	156				
Brainerd, Minn	185	J. D. Powell..	198	184	104				
Bridgehampton, N. Y	19	C. 1.. Garner	1914	181	167				
Bristol, Va ..	156	J. D. Powell.	1015	183	162			
Calats, Mo	8	G. R. Putnam....	H	178				805	.
Cambridge, Mass.	30do...	189	178			31	
Cambridge, Minn	184	J. D. Powell. .	1915	184	14				
Cedar Keys, Fla	161	C. L. Garner.	1915	183	169				
Charleston, S. C.	17	G. R. Putnam.	1896	177				306	
Charleston, W. Va	[\%	T. L. Warner. .	1911	181	155				
Charlotte, N. C.	151	J. D. Powell.	1915	182	161				
Charlottesville, Vs	19	G. R. Putnam.	1804	177			33		
Chatham, Mass	17	C. L. Garner..	1914	181	167				
Chersw, s.c.	150	J. D. Powell. .	1915	182	161				
Chicago, III.	36	G. R. Putnam.	193	178			34	
Clincinnati, Ohio.	3do.	1894	178			37		
Cleveland, Ohlo.	33do..	1894	178			34		
Cleveland, Tenn.	153	J. D. Powell	1915	18	162			
Clirton Forge, Va	172	C. L. Garner.	1915	183	172				.
Cloudland, Tenn	102	W. H. Burger..	159	180	146			
Cokato, Minn.	200	J. D. Powell. . . .	1915	[84	165				.
Coloratio Springs, Colo.	12	G. R. Putnam...	189	178			38		
Columbla, Tenn..	14	W. H. Burger...	1009	177	145				
Columbus, Ohlo.	136	J. D. Powell.	1914	182	159				.
Corapton, Cal .	66	W. H. Burger.	1910	17	19				
Crisfold, Md..	215	J. D. Powell. .	1915	185	100				

Name of station	No. of station	Observar	Year observed	Descriptien, this pullication	Abstract				
					This publicer	$\begin{aligned} & \text { Report, } \\ & 1891 \text {, } \\ & \text { App. } 15 \end{aligned}$	Report, 1893, App.	Report, 1897, App. 6	Report, 1898-99, App. 4
				Page	Page	Page	Page	Page	Page
Crookston, MInn.	191	J. D. Powell	1915	184	163				
Crosby, N. Dak	190	C. L. Garner.	1915	184	173				
Cumberland, W is	183	J. D. Powell.	1915	184	163				
Danville. Ky	171	C. L. Garner.....	1915	183	171				
Dawson, Minn	199	J. D. Powell. .	1015	184	165				
Deer Park, Md	20	G. R. Putnam...	1894	177			34		
Denison, Tex	73	W. H. Burger....	1910	179	150				
Denver, Colo	44	G. R. Putnam...	1894	178			36		
Dover, Del.	217	J. D. Powell.	1915	185	166			
Duluth, Minn	203	.do.	1915	185	165				
Durham, N. C.	91	H. D. King.	1911	180	153			
Edgemont, S. Dak	198	C. L. Garner.	1915	14	174				
Ellsworth, Kans	䢕	G. R. Putnam.	1894	178			37		
El Paso, Tex	63	W. H. Burger.	1910	179	149				
Ely, Minn	58do...	1909	179	147			
Ely, Ner	116	T. L. Warner.	1911	181	156			
Emporia, Va	147	J. D. Powell.	1915	182	161				
Erie, Pa	134	C. L. Garner.	1914	182	168				
Fairlax, V8.	214	...do	1915	185	175				
Faith, S. Dak	187	do	1915	184	173				
Faribault, Minn	196	J. D. Powell.	1915	184	164			
Farwell, Tex.	99	I. D. King.	1911	180	154				
Fergus Falls, Mimn	108	T. L. Warner.	1911	181	155				
Fornandina, Fla	02	H. D. King.	1911	180	153				
Fort Dodge, Iowa	119	T. L. Warner.	1911	181	157				
Fort Kent, Me.	108	W. H. Burger.	1909	181	148				
Fort Smith, Ark	141	J. D. Powell.	1914	182	159				
Frederlcksburg, Va	216	.do.	1915	185	166				
Gallup, N. Mex	70	W. H. Burger...	1910	179	150				
Galveston, Tex	7	G. R. Putnam.	1895	177				304	
Goldfield, Nev.	67	W. H. Burger.	1910	179	149				
Grand Canyou, Arlz	69	.do	1910	179	149				
Grand Canyon, Wyo	50	G. R. Putnam.	1894	178			35		
Grand Junction, Colo	46	do	1894	178			36		
Grand Raplds, Mich.	121	T. L. Warner	1911	181	157				
Grand Rapids, Wis..	19	J. D. Powell..	1915	184	163			
Green River, Utah	47	G. R. Putnam.	1894	178			35		
Greenville, Ala	173	C. L. Garner	1915	183	171				
Greenville, N, C.	148	J. D. Powell.	1915	182	161				
Guernsey, W yo.	117	T. L. Warner.	1911	181	157				
Gunnison, Colo	45	G. R. Putnam.	1894	178			36		
Guymon, Okla	100	H. D. Kilng.	1911	180	154				
Hagerstown, Md.	218	C. L. Garner. .	1915	185	176				
Marrisburg, Pa .	210	J. D. Powell.	1915	185	165				
Helenwood, Tenn.	101	T. L. Wamer	1911	180	154				
Heppner, Oreg ...	113do.	1911	181	156	,			
Tlinsdale, Mont .	77	H. D. King....	1910	179	151				
Holoken, N. J	36	T. C. Menderhall.	1891	178		556-557			
Homestead, Fia	157	C. L. Garner .	1915	183	169				
Mopkinsville, Ky	170	...do..	1915	183	171				
Ilot Springs, Ark	143	J. D. Powell.	1914	182	Im				
Hughes, Tenn ..	103	W. H. Burger.	1009	190	146				
Do..		T. L. Warner.	1911	180	155				
Huntley, Mont	114	C. L. Garner.	1915	184	174				
Huntsville, Ala.....	166	..do.....	1915	183	1:0				

Name of station	No. of station	Observer	Year obsarved	Deseription, this publication	Abstract				
					This publication	$\begin{aligned} & \text { Report, } \\ & \text { 1891, } \end{aligned}$	$\begin{aligned} & \text { Roport, } \\ & \text { 1899, } \end{aligned}$	$\begin{aligned} & \text { Report, } \\ & \text { 1897,' } \end{aligned}$	Report, 1898-99, App. 4
				Page	Page	Page	Page	Page	Page
Indianapolis, Ind	137	J. D. Powell..	1014	159	19				
Iron River, Mich	57	W. H. Burger.	Exes	179	147				
Do		H. D. King	1910	179	150				
Ithace, N. Y	32	G. R. Putnam. .	1894	178			32	
Joplin, Mo	140	J. D. Powell.	1914	182	159				
Kansas City, Mo	30	G. R. Putnam. ...	1894	178			37		
Keithsburg, III	12.	T. L. Warner.	1911	181	157			
Kerrville, Tex	62	W. H. Burger.....	1910	179	149			
Koy Weot, Fla	1	G. R. Putnam.	1898	177				305
Knoxville, Temm ...	155	J. D. Powell.......	1015	183	162			
Lake Placld, N. Y	86	W. H. Burger.....	100	180	147				
Lancaster, N. H	129	C. L. Garner....	1914	182	167			
Lander, Wyo.	105	.do	1915	184	174				
Laredo, Tex	0	G. R. Putnam....	1895	177				304
Las Vegas, N. Mex	71	W. H. Burger.	1910	179	150			
Laurel, Md .	[國	C. L. Garner.	1915	185	175				
Laurel, Miss	145	J. D. Powell.	1914	182	160			
Lead, B. Dak	75	H. D. King.	1910	179	151				
Lebanon, Mo	139	J. D. Powell.	1914	182	159				
Leesburg, Fla .	160	C. L. Garner.	1915	183	169
Leon, Iows . .	208	...do.	1915	185	175				
Lexington, Va.	175do.	1915	183	172			
Little Falls, N. Y	131do.	1914	182	168				
Little Rock, Ark .	13	G. R. Putnam.	1896	177				306	
Lower Cleyser Basin, W yo.	52	...do	1834	178			35		
MeAlester, Okla	12	W. H. Burger.....	1000	177	145			
McCormick, S. C.	Mdo..	19 MaH	177	145				--.......
Macon, Gis..	162	C. L. Garner	1915	183	170				
Madison, Wis	37	E. Smith.	1006	178					
Mammoth Spring, Ark	169	C. L. Garnar	1915	183	171			
Marmarth, N. Dak	188do.	1815	184	173			
Memphis, Tenn.	168do.............	1915	183	171			
Mena, Ark	98	H. D. King	1911	180	154				...-
Miles City, Mont .	IN	C. L. Garner.......	1915	184	173			
Minneapols, Minn	74	H. D. King.......	1910	179	151				
Mitchell, 8. Dak	6	W. H. Burger.....	Lnel	179	147				
Moorerolt, W yo .	W20	C. L. Garner .	1915	185	174				
Mount Hamilton, Cal .	55	T. C. Mandenhall.	1891	179		549550			
Mrcogdoches, Tex.	97	H. D. King.......	1911	180	154				
New Madrid, Mo .	05do.............	1911	150	153				
New Orleans, La .	5	G. R. Putnam....	1895	177				305	
New York, N, Y	27	E. Smith...	K90	178					280
Nogales, Ariz ...	64	W. H. Burger.....	1910	179	149				
Norris Gejser Basim, Wyo.	51	G. R. Putnam....	1894	178			35		
North Hero, Vt	85	W. H. Burger.....	1000	180	146			
Do		H. D. King.......	1910	180	152				
North Tamarack, Mich	218	J. P. Haylord	1802	185					
Oconto, Wis.............	179	J. D. Powell.	1915	184	163				
Olympla, Wash	112	T. L. Warner.....	1911	181	156				
Opelika, Ala ...	185	C. L. Garner......	1915	188	170			
Osage, lowa	204	J. D. Powell......	1915	185	165				
Parkersburg, W. Va .	135	. do.	1914	182	159				
Paxton, Nelr ...	83	H. D. King	1910	180	152				
Pembina, N. Dak	59	W. H. Burger.....	liwl	179	147				
Pensacola, Fla	Ift	C. L. Garnes......	1915	183	171				

Name of station	No. of station	Observer	Year ob sarved	$\begin{aligned} & \text { Dascrip- } \\ & \text { tion this } \\ & \text { publicar } \\ & \text { puion } \end{aligned}$	Abstract				
					$\begin{gathered} \text { This } \\ \text { publica- } \\ \text { tion } \end{gathered}$	$\begin{aligned} & \text { Report, } \\ & \text { App.1, is } \\ & \text { A8p } \end{aligned}$	$\begin{aligned} & \text { Report, } \\ & \text { 1894,' } \\ & \text { App. } \end{aligned}$	$\begin{aligned} & \text { Report, } \\ & \text { Ap97, } \end{aligned}$	Report, $1898-99$, App. 4
Washington, D. C. (Coast and Geodetic Survey \qquad		T. L. Warner. ...	1911	Pape	Page	Page	Page	Page	Page
					15				
Do.		do	1912		L198				
Do.		c. L. Garner	1914		166, 167				
Do.		...do.	1915		169, 172				
Do.		. do.	1916		178				
Do..		J. D. Powell.	1019		158				
Do.	do..	1915	160,162				
Do...	do...	1016	16				
Washington, D. C. (Smithsonian Institution).	2	T.C.Mendenhall.-	1891	177		564-555			
Wasta, S. Dak .	201	C. L. Garner.	1915	181	175				
Watertown, N. Y.	132do..	1914	182	168				
West Palm Beach, Fla.	2	W. H. Burger.	1909	177	145				
Wheeling, W. Va.	3 m	J. D. Powell.	1015	185	165				
Whitehall, N. Y.	130	C. L. Garner	1914	182	168				
Wilmer, Ala....	1	H. D. King.	1911	180	153				
Wilmington, N.C.	149	J. D. Powell .	1915	182	161				
Wi:son, N. Y. .	*	W. H. Burger.	1909	180	147				
Winnemucca, Nev.	115	T. L. Warner	1911	181	15				
Winona, Minn..	181	J. D. Powell.	1915	184	184				
Winston-Salem, N. C.	154	...do.	1915	183	181				
Worcester, Mass....	S	E. Smith.	1800	178					279
Tavapal, Ariz.	68	W. H. Burger.....	190	179	149				
Yuma, Aris..	65do	1910	179	149				

8

GENERAL INDEX.

Abstracts of results of gravity observations
Anomalies:By Haylord, Bouguer, and free-air reductionsComparison of apparent, at stations in the United States bythe Hayford and old methods of reduction.ravity, for various depths of compensation for stations in theUnited States保to topographyHayford, for specifed formations, United States stations.Hayford, for specifled formations, United States stations, sum-mary ofgroups eccording to topographyEighteen cosststations.Thirty-nine stations in the interior and not in mountain-ous regions
Eighteen stations in mountainous regions and above the
general level.
Twenty-two stations in mountainous regions and below
the general level
Twenty-five stations near the coast
Mean, for various depths of compensation based upon the
United States Coast and Geodetic Survey formula lor 1012..
Mean, Hayford, Bouguer, and freo-air for all C'nited States
stations.
Mean, Hayford, Bouguer, and freo-air for various topographic
groups.
Crent magnitudes, number
Onezot formation
On effusive formations
On intrasive formations.
On Mesozole formatlons.
On pro-Cambrian formations
On unclassiffed formations.
Relation between the gravity and the-
Areas of erosion and deposition.
ceotogic iormation st stations in Canna
Geologlc formation at stations in India.
Geologio formacion at stations in the United States.......
Geologic formation at stations in the United States not
within 20 ralles of another formation
Ceologic formation shown graphically
Topograjhy
Relation of local compensation and reglonal compensation to
the topography
Summary of mean, for verious depths of compensation and the
various values of equatorial gravity
A nomaly maps, gravity, explanation.
A reas deduced from gravity and from deflection data, agreament
as to positive and negative
Assumptions made in regard to the topography and isostatic com-
pensation.
Attractions for various masses, table.
Bonguer, Hisyiord, and tree-atr anomalles arranged in groups
according to topography.
80

Canada
Relation between the gravity anomalies and the geologic formation at stations

80
Cenozoic formations:
Anomalies........
Canadian stations and Hayford anomalies.......................... 80
Hayford anomalies at stations, which are not within 20 miles of other formations

78

Change of sign due to distance.

Chronometer rates, comparison of, for stations near and distant

Coast:
Haytord anomalies for various depths of compensation at 46 stations near

108
Hayiord, Bouguer, and free-alr anorailes lor 40ations near. Coast stations:

Hayford anomalies for various depths of compensation at 27. .
107
Hsylord, Bouguer, and free-air anomalles ior $27.2 . \ldots . . .$.
Coffficients of the gravity formula and depth of compensation
observation equations for obtaining
115
Compark between local ad reg bita
by the Hayford and old methods of reduction
88

And topography, corrections for, and mean elevations for
separate zones at selected stations in Europe..................
topography, corrections far, and mean olovations ion
And topography, correctlons for, for given depths of compensation.
And topography for given depths of compensation, hetors used in computing resultant of

Depths of, and constants for the gravity formulas dertved by analytical methods
an entensity of grayity of changes in the depth.
For given depths of compensation, factors used in computing
Gravity anomalies for various depths of, for stations in the United States.
Haylord anomalies for varlous depths of, arranged in groups 108
Helmert's depth of, from gravity observations.
Mean anomalles for varlous depths of, based upon the United
Obeervation equations for obtaining coefficients of the gravity formuls and depth
table tor elect op topapay an.

statement concerning the various solutions for obtaining
Summary of mean anomalies for varlous depths of, and the various values of equstorial gravity
Computation, explanation of methods of, and definition of terms.
derived by analytical methods.

Constanta of the gravity formula nnd related quantitios as derived from the various analytical solutions.
Corrections and additions to reduction tables.
Correetions for change of depth, station 195, Lander, Wyo.
Correctione for topography and isostatic compensation and mean elevations for separate zones at selected stations in Europe.....
Corrections for topography and isostatio compensation and mean elevations for separate rones at stations in the United 8tates....
Corrections for topography and Isoatatic compensation for given depths of compensation.

Definition of terms and explanation of methods of computation..
Deflection and gravity data, agreement as to positive and negative areas deduced from.
Deposition and erosion, relation between the gravity anomalies and arees.
Depth of compensation:
And coefficients of the gravity formula, observation equations for obtalining.
And gravity formuls, statement concerning the various solutions for obtaining.

Best

112, 133
Corrections for, station 195, Lander, Wyo.
99
Effect on the intensilty of gravity of changes in the.
Graphic determination of the most probable
Helmert's, from gravity obeervations.
Relation between the, and the topography .
87

Depths of compensation:
And constants for the gravity formula derived by analytical methods.
Corrections for topography and isostatic compensation for given.
Factors ueed in computing compensation for given.
Fectors used in computing the resultant of topography and compensation for given.
Gravity anomalios for varlous, for atations in the United States.
Hayford anomalies for various, arranged in groups according to topography.
Mean anomalies for various, based upon the United States Coast and Geodetic Survey formula for 1912.
Summary of mean anomalies for various, and the various values of equatorial gravity.
Deacriptions of gravity stations.
Distribution of compensation, regional versus local.
Divided rones, reduction tables.
Effusive formations:
Anomalies.
Hayford anomalise at stations on, which are not within 20 miles of other formations.
Indian stations and Hayford anomalies.
United States stations and Hayford anomalies.
Elevation of the station, effect of the, upon the intensity of gravity.
Elevation, sets of adjacent stations having great differences......
Elevations and anomalies, differences of, for sets of near stations. .
Elovations, mean, and corrections for topography and isostatic compensation for separate zones at selected stations in Europe. .
Elevations, mean, and corrections for topography and isostatio compensation for separate zones at stations in the United States.
Equations, observation, for obtaining coefficlents of the gravity formula and depth of compensation.
Equatorial gravity, summary of mean anomalies for various depths of compensation and the various values.
Eroalon and deposition, relation between the gravity anomalies and areas.
Europe, mean elevations and corrections for topography and isostatic compensation for separate zones at selected stations......
Factors used in computing compensation for given depths of compensation.
Factors used in computing the resuitant of topography and compensation for given depths of compensation.
Fleld, methods of observing used in the, and standardization of pendulums.
Flattening, best value of, fron all available gravity stations reduced for topography and isostatic compensation.
.. 177, 134

Formula:
Page.
Best, from all avaflable gravity stations reduced for topography and isostatic compensation.

127,134
Constants of the gravity, and related quantities as derlved from the varlous analytical solutions.

For 1912, mean anomalles for various depths of compensation
based upon the United States Coast and Geodetic Burvey. 12 Gravity, Helmert's, for 1901
Gravity, of 1012 58
Gravity, of 1016 123,134

O bservation equations for obtaining coafficlents of the gravity,
and depth of compensation.

obtaining the gravity. 130
Formulas, constants for the gravity, and dopths of compensation derived by analytical methods. 113
Freesir, Hayford and Bouguer anomalies arranged in groups sccording to topography 68
Free-air, Hayford and Bouguer reductions, anomalies 59
Geologic formation:
Relation between the gravity anomalles and the- Atstations in Canada 80
Atstations in India. 81
Atstations in the United Statee. 70, 71
At stations in the Unlted States not within 20 milles of another formation. 78
Shown graphically. 82
Graphic determinstion of the most probable depth of compense- 111
Gravity:And deflection data, agreement as to positive and negativearees deduced from62
Anomalies and the topography, relation between. 68
Anomalies for vario 103
Anomalies, relation between the, and the- Areas of erosion and deposition. 84
Geologic formation at stations in Canada. 80
Qeologic formation at stations in India. 81
Geologic formation at stations In the United States. 70,71
Geologic formation shown graphically 82
Anomaly maps, explanation. 61
Effect of changes in the depth of compensation on the intensity 97
Effect of the elevation of the station upon the intensity 93
Equatortal, summary of mean anomalies for various depths of compansation and the various values. 108
Formula and depth of compansation, atatement comoerning the various solutions for obtaining. 130
Formula, constants of the, and related quantities as derived Irom the various analytical solutions. 129
Formula, observation equations for obtaining depth of com- pensation and coofficients of the. 115
Formula o! 1912 53
Formuls of 1916 123,134
Formulas, constants for the, and depths of compensation derived by analytical methods. 113
Observations, Helmert's depth of comp 131
Stations-
Abstracts of observations 144
Descriptions. 177
Names and numbers. 50-57
Hayford and old methods of reduction, comparison of apparant anomalies at stations in the United States by the 88
Hayford anamalies:
For spealifed geologle formations-
80
Canadian stations 81
United Statesstations. 71
United States stations, summary 72
Forstations in the United Statas on specifled formations and not within 20 miles of other formations. 78
For varlous dopths of compansation arranged in groups so cording to topography 307
Hayford, Bouguer, and freo-air anomalies arranged in groups ac- cording to topography 68
 Helmart's depth of compensation from gravity observations. Helmert's gravity formula of 1901

India, principal facts for 73 stations
India, relation between the gravity anomalles and the geologic formation at stations.
Interfor and not in mountainous regions:
Hayford anomailes for various depths of compensation at 87 stations
Hayford, Bouguer, and tree-air anomalies for 88 stations....
Local and reglonal compensation anomalies at 30 stations.
Intrusive formations:
Anomalies.
Hayford anomalies at stations on, which are not within 20 milles of other formations.
United States statlons and Eayford anomalies.
Isostasy defined.
Local and regional compensation anomalies:
At 18 coast stations.
At 18 stations in mountainous reglons and above the general level.
At 22 stations in mountainous regions and below the ganeral level.
At 39 stations in the interior and not in mountainous regions.
At 25 stations near the coast.
Local-compensation anomalies and reglonal-compensatiom anoma-
lies, relation to the topography.
Local versus regional distribution of compensation
Maps, gravity amomaly, explanation.
Masses, table of attractions for various.
Mesozoic formations:
Anomalies.
Cansdian stations and Fiayford anomalles
Hayford snomalies at stations 00, which are not within 20 miles of other formations.
Indlan stations and Hayford anomalies.
United States stations and Hayford anomalies.
Methods of computation, explanation of, and definition of Corms.
Mountainous regions and above the general level:
Hayford anomalles for various depths of compensation at 20 stations.
Hayford, Bouguar, and free-alr anomalies for 20 stations.
Local and regional compensation anomalies at 18 stations.
Mountalnous neglons and below the general leval:
Hayford anomalies for various depths of compensation at 36 stations.
Hayford, Bouguer, and freo-air anomalies for 38 stations.
Local and regional compersation anomalles at 22 stations.
Observation equations for obtaining coofficlents of the gravity
formuls and depth of compensation. .
Observations and reductions, pendulum.
Observing, mothods of, used is the field and standardization of
pendulums.
Paleozoic formations:
Anomalies.
Cansdian stations and Hayford anomalies.
Hayford anomalies at stations on, which are not within 20 miles of other formations.
Indian stations and Hayford anomalies.
United States stakona and Hayford anomalles.
Pendulum observations and reductions
Pemdaluma, standardization of, and mothodis of observing used
In the fild.
Pendulums, summary of pariods of, resulting from standardiza-
tlons at Washington base station.
ProCambrian formations:
Anomalies.
Canadian stations and Hayford anomalies.
Higford anomalles at stations on, which are not within 20 miles of other formations.
Indlan atations and Heyford anomalien.
Unitod States stations and Eayford anomalies.

59
131
19

Principsl facts for: Page.
42 stations in Cansds. 54
73 stations in India. 55,56
219 stations in the United States. 48,50
40 stations not in the United States proper, Canads, or India. 57
Rates, comparison of chronometer, for stations near. Washington
and stations distant from Washington. 143
Reductions
Comparison of the apparent anomalies at stations in the United States by the Hayford and old methods. 58
Table, corrected, for zone C. 10
Tables, corrections and additions. 9
Tables for divided zones. 11
Tables for effect of topography and isostatle compensation 0
Reductions, anomalies by Hayford, Bouguer, and free air 58
Reductions, pendulum observations and. 144
Regional and local compensation anomalies:
At 18 coast stations. 88
At 18 stations in mountainous regions and above the general level. 91
At 22 stations in mountainous regions and below the general level. 90
At 39 stations in the interior and not in mountainous regions. 90
80At 25 stations near the coast.
Relation to the topography 89
Regional versus local distribution of compensation. 85
Relation between the depth of compensation and the topography. 107
Relation betwean the gravity anomalies and the-
Areas of erosion and deposition. 84
Geologic formation at stations in Canads. 80
Geologic formation at stations in India. 81
Geologic formation at stations in the United States. 70,71
Geolagic formation at stations in the United States not within 20 miles of other formations 78
Geologic formation shown graphically 82
Topography. 63
Relation of local and regional compensation anomalles to the topography 88
Results of gravity obsarvations, abstracts 139
Slgn, change of, due to distance 8
Standardization of pendulums and methods of observing used in the field. 139
Standardizstion at Washington base station, summary of pariods of pendulums resulting from 141
Stations, gravity:
Abstracts of observations. 144
Descriptions. 177
Names and au
8uramary, Part I. 50-57
Summary of parlods of pendulums resulting from standardizations at Washington base station 141
Table, corrected reduction, for wone C. 10
Tables:
Corrections and additions to reduction. 9
Reduction, for divided zones. 11
Reduction, for effect of topography and isoatatic compansation.Terms, defnition of, and explanation of methods of computation.Topography and compensation for given depths, factors, used incomputing resultant of.7
99Topography and Isostatic compensation:
Assumptions made in regard to... 8solected stations in Europe45
Corrections for, and mean elevations for separate rones at sta- tlons in the United States 19
Corrections for, for given depths of compensation 100
Reduction tables for effect. 9
Topography:
Hayford anomalies for various dopths of compensation arranged in groups according to 107
Hayford, Bouguer, and tree-air anomalies arranged in groups according to. 63
Relation between the depth of compensation and the 107
Relation between the gravity anomalies and the 63

the
Unlted States:
Comparison of apparent anomalles at stations in the, by the Hayford and old methods of reduction
Gravity anomalies for varlous depths of compensation tlons in the Mean elevations and corrections for topography and lsostatio compensation for separate rones at statlons in the
Princlpal facts for 219 stations in the mailes and the geologic lor
Relatton between the gravity anomsilies and the geologio formation for stations in the, which are not wichin 20 milea of other formations

Pag. United States-Continued. Page.
Stations and Haytord anomalies for spocified geologio forma-
tions.71
Washington bese station, summary of periods of pendulums resulb- ing from standardizations at 141
Washingtan, chronometer rates for stations near 143
Washington, chronometer rates for stations distant from 143
Zone C, corrected reduction table for 10
Zones, divided, reduction tables for. 11
Thit poret Bo no:ap

14274

PLEASE DO NOT REMOVE

CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

[^0]: - Figure of the Earth and Isostasy from Measurements in the United States, by J. F. Hayford, 1009; Supplementary Investigation in 1809 of the Figure of the Earth and Isostasy, by J. F. Hayford, 1910; Eflect of Topography and Isostatic Compensation upon the Intensity of Gravity, by J. F. Hayford and Willam Bowle (Spectal Publication No. 10), 1912; same titlo, sccond paper, by Wuliam Bowic (Special Publication No. 12), 1912.

[^1]: a In this publication "gravity" is the term used for the phenomenon of weight or of the acceleration of a body falling to the earth, and, at any place, it is the resultant of the earth's attractive force, "gravitation," and the centrifugal force due to the earth's rotation. Thls distinction between the terms "gravity" and "gravitation" is not always clearly drawn.

 In general it will bo found that thronghout this publication the attraction (expressed in dynes) is dealt with directly by preference rather than its numerical equivalent, the acceleration (expreased in centimeters and seconds).

[^2]: a See Survey of Indla, Professtonal Paper No. 15, "The penduium operations in India and Burma, 1908 to 1913," by Capt. H. J. Couchman, R. E., Deputy Superintendent, Survey of Indila, Dehrs Dum, India, 1015.

[^3]: a Bestimmung der absoluten Orösse der Schwerlyraft zu Potsdam mit Reversionspendeln, von Prof. F. Kühnen und Prof. Dr. Ph. Furtwängler, p. 350 .

 B Determination of Relative Value of Gravity in Europe and the United States in 1900, G. R. Putnam, Appendix 5, Coast and Geodetic Survey Roport, 1901, pp. 354-355.

[^4]: " "L'eber dle Reduction der auf der physischen Erdoberfläche beobachteten Schweresbeschleunigungen auf ein gemeinsames Niveau" by Helmert, Sitzungsberichte der Königlich Preussischen Arademie der Wissenschaften, volumes for 1902, p. 843, and 1003, p. 650.

[^5]: © This station is in west longitude.

[^6]: ＊The corrections for departures from proportionality and for elevation of station which occur in zones 14－18 are neglected as unimportant．
 \dagger The resultant might have been found mathematically by integration，but this was not discovered until Special Publication No． 10 was in press．The formula of integration and the tables for its use（based on zones different from those used by the Coast and Geodetic Survey）are given by G．Cassinis in publication entitled＂Sull＇Appllcazione del Metodo Isostatico alle Riduzione delle Misure di Gravita，＂Rome，1911．In computing the density of compensation of his outer zones I to XX，Cassinis neglects the convergence of the verticals bounding the compensation， and his density of compensation should be multiplied by approximately 1.019 ．Although this error is less than 2 per cent of the compensation， since topography and compensation are large and nearly equal for distant zones，it completely falsifies the resultant for these zones．This error is repeated in the publication by Reina and Cassinis，＂Determinazione di Gravità Relativa compiute nel 1912 a Roma，Arcetri，Livorno，Genova， Vienna e Potsdam，＂Rome，1013．This error was corrected before use was made in this publication of the computed reductions for topography and isostatic compensation given in the publication just mentioned．（See p．57．）

 In（Ferland＇s＂Beiträge sur Geophysik＂Band XII，pp．588－638，there is an extended diseussion of formulas by Erich Habner entitled，＂Beitrag zur＂Theorie der isostatischen Reduktion der Schwerebeschleunigungen．＂On p． 638 he notes an error of 2 per cent in the tables of Special Publi－ cation No．10，due to neglecting the convergence of the verticals．This error is，however， 2 per cent of the small resultant for any compartment，not 2 per cent of the compensation，and may，therefore，be neglected．

[^7]: a See Figure of the Earth and Isostasy from Measurements in the United States, and Supplementary Investigation in 1909 of the Figure of the Eharth and Isoatasy, J. F. Hayford, 1909.

[^8]: a This station is used only with near-t,y stations to give a single observation equation. See table of groupe on p. 119. Staifon 134 enters by fteelf only in sofltions 1 and 4; as a part of group 6 C , p . 120 in solutions $2,3,6$, and 8
 e Station 88 enters by itsalf only m sime 132 entors solutions 1 and 4 as a part of group 3 ; solutions $2,3,6$, and 8 as a part of group 4 C, $\mathrm{p} .120^{\circ}$

[^9]: This station is used only with near-by stations to give a single observation equation. gee table of groups below. Station 108 enters alono only in solutions 1 and 4; as a part of group 3 C, p. 120 , in solutions $2,3,6$, and 8 .

[^10]: * For example, Wright and Hayford, Adjustment of Observations, p. 337, or Helmert, "Die Ausgleichungsrechnung," 2te auflage, p. 180.
 $\uparrow z$ and y are independent of z, according to assumption, and therefore γ_{e}, which depends only on x and y, is also independent of z; similarly for B and f. As a matter of fact, the rodistribution of attracting matter implied in the correction for isostatic compensatfon will change somewhat the lorm of the level surfaces and the intensity of gravity. For the earth considered as a whole the change is sitght. Prof, de Sitter (la the Koninklikje A kardemie van Wetenschappen te A msterdam, Proceedings of the Section of Sciences, Vol. XVII, pt. 2, p. 1205) makes some approximate mechanical quadratures and coneludes that for the geoid as idealived by isostatic compensation to a depth of $114 \mathrm{~km} .1 / \mathrm{f}$ will be 0.14 less than for the actual geold. The effert on gravity at the equator is to make the idealized gravity greater than the true by less than 0.001 dyne. For smaller changes in dopth the effects would be correspondingly less, and the assumptions made ary ev dently not seriousiy vitiated.

[^11]: a Sitzungsberichto der Köngifich Preussischen Abadomio der Wissenschatten, No. 41 (1915), p. 676, entitled "Neve Formeln fur den Verlaus der Schwerkraft in Meeresniveau belm Festlande."

 - Enopelogidio der Mathomatschen Wlasenschatten Band V1 1B, Heft. 2 Die Sohwerkraft und die Massenvertellung der Erde, P. 140.

[^12]: - Bouguer, La Figure de la Terre, dotermin6e par les observations de M. M. Bouguer et De La Condamine, etc. Parls, 1749, p. 364.
 - Sur la densité moyenno de la chaine des Pyrénóes et sur la latitude de l'Observatoire de Toulouse; Comptes Rendus, vol. 29, 1849, p. 729.
 - Roger Joseph Boscovich, De Litteraria Expeditiono per Pontificiam Ditionem, 1750, p. 475; quoted from Todhunter's Mathematical Theories of Attraction and the Figure of the Earth, vol. 1, p.313.

